a2 United States Patent
Saleh et al.

US012353987B1

US 12,353,987 B1
Jul. 8, 2025

(10) Patent No.:
45) Date of Patent:

(54) MODULAR SoC AIML INFERENCE ENGINE
WITH DYNAMIC UPDATES USING A
HUB-AND-SPOKE TOPOLOGY AT EACH
NEURAL NETWORK LAYER

(71) Applicant: DDAIM Inc., Jupiter, FL. (US)

(72) Inventors: Thomas J. Saleh, Norwalk, CT (US);
Laura C. Trumbull, West Chester, PA
(US); Lawrence C. Rafsky, Jupiter, FL.

(US)
(73) Assignee: DDAIM Inc., Jupiter, FL. (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/798,833

(22) Filed: Aug. 9, 2024
Related U.S. Application Data

(60) Provisional application No. 63/661,946, filed on Jun.

20, 2024.
(51) Int. CL

GOG6N 3/063 (2023.01)

GOG6N 3/04 (2023.01)
(52) US.CL

CPC oo GOG6N 3/063 (2013.01); GO6N 3/04

(2013.01)
(58) Field of Classification Search
CPC o GO6N 3/063; GO6N 3/04
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,792,397 Bl
10,268,951 B2

10/2017 Nagaraja
4/2019 Sckiyama et al.

(Continued)

/INFEREIM:Ssnocsss
1206

=

FOREIGN PATENT DOCUMENTS

CN 110462640 A 11/2019
CN 110462642 A 11/2019
(Continued)

OTHER PUBLICATIONS

Wang, Zhaoze, and Junsong Wang. “A Versatile Hub Model For
Efficient Information Propagation And Feature Selection.” arXiv
preprint arXiv:2307.02398 (2023). (Year: 2023)*

(Continued)

Primary Examiner — Randall K. Baldwin
(74) Attorney, Agent, or Firm — Gearhart Law LLC

(57) ABSTRACT

An electronic circuit system implementing and executing
machine learning inference engines. While ML inference
engines are based on (architectures and parameters defined
by) configured, trained and tuned machine learning models,
our design has the novel ability to support data driven,
on-the-fly-reconfigured model runs. Reconfiguration and
tuning operations include dynamic computational graph
modifications, define-by-run alterations, changes to network
depth (number of layers) and width (neurons per layer), and
adjustments to weights, biases, plus activation function
parameters. Neural networks supported include Feed-For-
ward, RNN, CNN, and Hopfield architectures, plus
Ensemble, Federated, Cooperating, Adversarial, and Swarm
collections. Decision Trees and Forests are also supported,
as are more esoteric approaches such as ART and KAN. Our
invention is capable of running both standalone and coop-
eratively, the cooperative processing being local and/or
remote/cloud based, interfacing with telemetry applications
to feed data, and machine learning software to feed new or
updated models.

42 Claims, 23 Drawing Sheets

own erancs Enghte

FUSION-DECISION-ALERT
208

i
e
i

ot
o
o
B

Runs on the Hub-and-Spoks fogic circults

e Xz
ot variepi it tEuT-ts0uND te.

e

US 12,353,987 B1

Page 2
(56) References Cited EP 3607499 Al 2/2020
EP 3607500 Al 2/2020
U.S. PATENT DOCUMENTS EP 3607501 Al 2/2020
Jp 2020515989 A 5/2020
10,372,859 B2 8/2019 Nagaraja P 2020515990 A 5/2020
10,387,298 B2 /2019 Baum et al. P 2020515991 A 5/2020
10,558,914 B2 2/2020 Sekiyama et al. Ip 2020517005 A 6/2020
11,216,717 B2 1/2022 Baum et al. P 7108268 B2 7/2022
11,221,929 Bl 1/2022 Katz et al. wo 2017038104 AL 372017
11,237,894 Bl 2/2022 Baum et al. WO 2018185762 Al 10/2018
11,238,331 B2 2/2022 Baum et al. wo 2018185763 Al 10/2018
11,238,334 B2 2/2022 Baum et al. wo 2018185764 Al 10/2018
11,263,077 Bl 3/2022 Seznayov et al. WO 2018185765 Al 10/2018
11,263,512 B2 3/2022 Baum et al. WO 2018185766 Al 10/2018
11,354,563 B2 6/2022 Baum et al. WO 2022203809 Al 972022
11,461,614 B2 10/2022 Baum et al.
11,461,615 B2 10/2022 Baum et al. OTHER PUBLICATIONS
11,461,637 B2 10/2022 Sekiyama et al.
11,514,291 B2 11/2022 Baum et al. Setareh, Hesam, et al. “Cortical dynamics in presence of assemblies
ﬁ’gig’;ig g% 1%%8%% Ezllllr;;met al. of densely connected weight-hub neurons.” Frontiers in computa-
11:551:028 B2 1/2023 Baum et al. tional neuroscience 11 (2017): 52. (Year: 2017)*
11,615,297 B2 3/2023 Baum et al. “Al SOC Solutions”, Palo Alto Networks; Website Link: https://
11,675,693 B2 6/2023 Baum et al. wva.p_aloaltonet\x_]orks.com_/cyberpedja/revolutionizing-soc-operations-
11,811,421 B2 6/2023 Kaminitz et al. with-ai-soc-solutions, retrieved on Jun. 25, 2024, pp. 19.
11,874,900 B2 1/2024 Kaminitz et al. Flamand et al., “GAP-8: ARISC-V SoC for AI at t_he]_Edge of _the
2016/0006294 Al 3/2016 Chetlur et al. IoT”, IEEE 29th International Conference on Application-specific
2016/0035807 Al 12/2016 Brothers et al. Systems, Architectures and Processors, 2018, pp. 1-4.
2018/0014424 Al 5/2018 Masoud et al. Ghioni et al., “Open source intelligence and Al: a systematic review
2018/0285254 Al 10/2018 Baum et al. of the GELSI literature”, Al & SOCIETY, vol. 39, No. 4, dated Jan.
2018/0285678 Al 10/2018 Baum et al. 28, 2023, pp. 1-16.
2018/0285718 Al 10/2018 Baum et al. Hung et al., “Challenges and Trends of Nonvolatile In-Memory-
2018/0285719 Al 10/2018 Baum et al. Computation Circuits for Al Edge Devices”, IEEE Open Journal of
2018/0285725 Al 10/2018 Baum et al. the Solid-State Circuits Society, vol. 1, dated Oct. 26, 2021, pp.
2018/0285726 Al 10/2018 Baum et al. 171-183.
2018/0285727 Al 10/2018 Baum et al. Cherney et al., “Intel sees Al opportunity for standalone program-
2018/0285735 A1 10/2018 Baum et al. mable chip unit”, Reuters; Website Link: https://www.reuters.com/
2018/0285736 Al 10/2018 Baum et al. technology/intel-sees-ai-opportunity-standalone-programmable-chip-
2019/0026648 Al 8/2019 Sekiyama et al. unit, retrieved on Jun. 25, 2024, pp. 11.
%858;8382?3; ﬁ} * 1}%858]SSmurrot“a'l' ~~~~~~~~~~~~~~ A61B 34/30 Vijay Janapa Reddi, “Machine Learning Systems”, Harvard Uni-
aum et al. versity, retrieved on Jun. 25, 2024, pp. 1138.
2020/0242146 Al* 7/2020 Kalukin GOGF 16/3329 Torres-Sanchez, et al., “Developing an Al IoT application with open
2020/0279133 Al 9/2020 Baum et al. software on a RISC-V SoC”, XXXV Conference on Design of
%838;8332325 ﬁ} ggg%g Egﬁg ZE 211 Circuits and Integrated Systems (DCIS), dated Nov. 18, 2020, pp.
: 1-6.
2020/0285950 Al 9/2020 Baum et al. “Al drives explosion in edge computing”, AXIOS; Website Link:
%832;8?33;3? ﬁ} lggggg g;(l);go;?;t al. https://www.axios.com/2024/02/16/ai-edge-computing-5g, retrieved
2022/0101042 Al 3/2022 Kaminitz et al. on Jun. 25, 2024. pp. & , ,
5022/0101043 Al 32072 Katz et al. osencrance et al., “Industry Talks: Edge Computing Opens a Path
5022/0103186 Al 32027 Kaminitz ef al for Growing Data Center Needs”, Techopedia; Website Link: https://
2022/0011391 Al 4/2022 Kuriata ot al. ' www.techopedia.com/industry-talks-edge-computing-opens-a-path-
2022/0309314 Al* 92022 Parko GO6N 3/063 for-.growmg-data-cente.r-needs, r.etrleved on Jun. 25, 2024, pp. 14.
5023/0161997 Al 5/2023 Baum et al. Smith et al., “Generative Al Slims Down for a Portable World:>
2004/0394521 AL* 11/2024 ROSE ..o GOG6N 3/063 Consumer tech aims LLMs everywhere-with laptops as the beach-
2025/0119354 AL* 4/2025 VASSEUT .o HO4L 41/147 ~ head”, IEEE Spectrum, vol. 61, No. 2, Feb. 2024, pp. 5-13.
“Machine Learning and Signal Processing” IEEE International
Solid-State Circuits Conference, 2018, pp. 327.
FOREIGN PATENT DOCUMENTS Carlos E. Perez, “PyTorch, Dynamic Computational Graphs and
CN 110462643 A 11/2019 Modular Deep Learning”, Medium; Website: https://medium.com/
CN 110476174 A 11/2019 intuitionmachine/pytorch-dynamic-computational -graphs-and-modular-
CN 110494869 A 11/2019 deep-learning-7e7f89f18d1, retrieved on Jun. 25, 2024, pp. 10.
EP 3607497 Al 2/2020
EP 3607498 Al 2/2020 * cited by examiner

Sheet 1 of 23

Jul. 8, 2025

U.S. Patent

{uoisny)
NOISIDIT TYNIS

{so18215)

HIAVTANALINO

{Ldv "oliud}
L old SYIAYT NIAAIH

HIAYT LNdNI

US 12,353,987 B1

mmz

{umopinyg

L
g [eriuf - pul) a1ess

TS

| i
soselq snid (G TETMm

{11e4 01 \

mmmm_n snid :w%i?

2 4 8 .w, i 4 4
| o | |
$5%e1q SN |d (P T EIM ENET mﬁza 67 M
01 (T'Telm s1ugiam O {TT'ZIM s3yBiam
A e S—

01 {T'T7G)M S1UBIap

o1 (LTI s1ysiamn

| suonsuny mozm\ﬁu/\ |

—

US 12,353,987 B1

Sheet 2 of 23

Jul. 8, 2025

U.S. Patent

(wors)
NOISIDIA TUNI

N {umopinys
¥ lBnu] f[oul) 31e38

T 111

HIAYTLANALNO

|

(sa1e3s) (Luv HoIYd) .
2ol | SUIAVTINIAAIH

4 4 4 2

i

A
£oa

HIAYT LNdNI

sase

£t

01 (TTE)M SIS Iapn

m i
[snjd (Fv'elm

SSSEq SAA (672
o1 (T'T°Z)M s3yBiam

I

| ,
SSSEIq sNid [§TGIM
01 {TT'sIm s1uBism

03 (T SIS Iamm

| i]
§5521q sn|d (P SVIM

)

w SUDIOUNY UORBALDY

US 12,353,987 B1

Sheet 3 of 23

Jul. 8, 2025

U.S. Patent

{uoisng)
NOISIDIQ TUNI

{s=1e3s)
HIAVT LNdINO

Ve Old

{syindu sasserosd JoAe] U PPIH AS4d)
SHIAYVT NIUAIH

(URGPINGS

9 jeniug puy) a1els

led o3 %
\ 1noay

~ . S
8 e

SSSETY SATI (G TTIM
01 (DT S3USIB/N

SISEIg sAd (TS E/M
01 (T°T'eim s1ystem

U

LT 711

[

SSSEIG Snd (FV M
o1 {LTZIM s3UBiam

§5581q m:_m BV TIM
o3 {(TTTIm S1YS 1M

HH:

@mqu eied UORIUNL UONEALDY

w

I

s1ni

US 12,353,987 B1

Sheet 4 of 23

Jul. 8, 2025

U.S. Patent

{uoisny)
NOISIDIA TYNH

{ cuew

Nido

/11eq 01
\ noay

B eniul ‘pul) arels

{sa1E35) ge"oud {syndus sassasosd Johe] usppiy 1524}
HIAVT LNdLNO SYIAVT NIGAIH
[OmopIngs

SSSEIq SHIO (ST TIM
o1 {TTwlMn S14BiaMm

Soserq snjd :\m@
01 (TT'E)M S1UBIapA

ATGuiauld
awgun

SSSEIq sR{d FF M
oy (1T zim sauSism

EEHEL m_:a [ET7TIM
o1 (T LTI S1YFIom

FT T

Tl

f

Tl

Sieysuiesed uONDUN) UCREBANDY |

i

Tl

SLT

~T0gE

U.S. Patent Jul. 8, 2025 Sheet 5 of 23 US 12,353,987 Bl

FIG.3C

US 12,353,987 B1

Sheet 6 of 23

Jul. 8, 2025

ae-old

U.S. Patent

/y/.,
/
N
/
\
/
\
| B -\u .
ﬁ _mﬁ.me vm:mgwg
o
A /
g /
// : \\
/ \
ya
R\\
\
.\\\
\\\
T — e
pa— — \
o€ T - N -
a e,
saseig mswa ﬁm.ﬁ.vrﬁ mmmm_ﬂ mn_a g.m.m:ﬁ s$a958iY ms_a Swrw.Nv>> saseiq ms.a Amn.v:m;\/
0} aﬂ.q% m%a% 01 aﬁum,% ,&%a\s o1 {1't N;> mzm,mg 01 (TT'TIA S1YSiom
suopoung comm>5u<
SLT

US 12,353,987 B1

Sheet 7 of 23

Jul. 8, 2025

U.S. Patent

/\

h\x e R

InuL={t7)a |

i

v old ‘-

_ {117 1)1 40 0 WM} uoioun g UoQeARYY

SOA

ioaie (T

WAL 03 g auo {17 Jo suq e yys _Ia21 1O S 6 49p40 YBiy e
m
: !
P * (17208 + (6 YBnoay Thwns = (1°7)y
,\ |
80V
o o I
Loy LN
SRR NEN
9993883583
Pribbiibg
e oo B el | bW
B1512|22|22|2 2
AR
™~
S|Tigid|8i8ls|8le
AR e S S R RN R S
D e I B N A I I I
; $1glg|gigigidlgle
N = = 21xl2E 2|22
S > > I 3 x = = ® el
30 XiZioigielein|igl
H [W i it [i it i
Yiviolglnleinlele

SUOJNBU {E SSOIDB PUR LOJINBU Y2BS UL uo nendwod jajesed JaAe) yoes uj

DN

(r'ae-{12ia (6% am{

€0y

357v4 = 6p Ynosyy 1p

J2fo11858y W

o

. sop

IS = (17

ja

ZIM BX—~ TX

61

NDa-(T2a - (17
{z

FEILEN
pawoys

28 (' UMATTTIM BX-TX

AIOWIIN
painys {pqojs

U.S. Patent Jul. 8, 2025 Sheet 8§ of 23 US 12,353,987 Bl

FiG. 5

e

544

3/
A

US 12,353,987 B1

Sheet 9 of 23

Jul. 8, 2025

U.S. Patent

{uoisny}
NOISIZEA TYNY

[evew

o

S es o \
- \anoagy

(se1e35) 9791 {(sandu sassasoud johet usppIH 15iid)
YA LNdINO SHIAYT NIATIH
7
»\
{UMOPINYS

B jeniug jpul) sleis

. e

SOSETG SHT (G TSYIA
0} {TTF)IA SIYSIem

SSO5EIq SO0 (TS EIM
01 (1Tl s1y8iam

rr i

IR

soselg snjd P eI
01 (T'T'Z2IA S1UB1am

535BIG sN[d (G F TIM
AL {TTTIM sayBiag

t

I T 11

$ie1awesed UOHOUNY LONBADDY |

T

SLOT

U.S. Patent Jul. 8, 2025 Sheet 10 of 23 US 12,353,987 Bl

2
3
£
o
@
et
®
8
=
I
c
3
o
=3
82
=
£
b
=}
o
Lz

US 12,353,987 B1

Sheet 11 of 23

Jul. 8, 2025

U.S. Patent

sgny payeooyeun sauy) Buimoys

gL790

suoineu peresoeun om) Burmoys

US 12,353,987 B1

Sheet 12 of 23

Jul. 8, 2025

U.S. Patent

8914 —
e T \nr\\
. B 3 P T ~E08 x\\,\ e .
Y e ‘ ~
| anponavon e
e . % , - N
A UoLIB|dWIOD 10 HEM b ”
H &
: " A R
M 3
| eInpolN avoTieD | v 7
wwondo . =
| uny-Ag-sugeg | :
I
_
= . tar N .
m Jsigaa paseys | is1si881 paseys
uoisIap JaBRuY o
woydo : r S{”
uny-Ag-suyeq | . m. i
ke
o v i amm. w
/ w:w W _
//P L1
\\..
QW B 1E 2U0) sany [[B AQ paieys NdD \\\
yd
- \\
L
T
— e T
— 108
e
SOSEId SRIGISTIIM SOSEH] SN0 ('S EIM SISEIq SO Py CIM SISBIG SNIa (67 TIM
01 {TT7IAL STYSIaM o1 {TTE)IM StyStam 01 (T'T73M S3YFIam 03 (T'TTIMA S3YBiam
;ﬂ
IR IR 11T 1T I
¥
[suopouny vopeandy
| LT

US 12,353,987 B1

Sheet 13 of 23

Jul. 8, 2025

U.S. Patent

uotsny) (uonnjonuod) 6o SHIAYTNIAQOIH HIAYT LNdNI
NOISIS30 TN HIAYT LOdIN0))
ST T s (re)en g (raien Ja
£086 ’X
pajied \
!
{g'elan (e'zhen
8X Jo
jteg ol . .
3 FAATA
nogy (z'ehen (z2)eN))
) /
PP
{ {¥'eleN (1'2leN
Uiyoiem oX I
N\
LMY el r'oN
: SX
pooy /
\ {e'ein (£TN
w /
ﬁ MouRUN |) (z'eN {zzN
/
06 -7 /
e e {T'eIN (17N
\\\
708 fﬁu\\%
T ume SIS w 4 »my 4 .ﬁ 4 ._,
kLU .muc_v EAA2 , mmme svid , m%mmﬁ mma
O S Aor 4 oo remaudem || 6 ziimo (T gmsusiom
| : i | * | i i A P B ————
sasejq snid sasely snjd . , | T e
(STSIM AT T'S)M sIyBem (7S P 0L (T T v SIuBam | suopaung uopeaudy | & ;

US 12,353,987 B1

Sheet 14 of 23

Jul. 8, 2025

U.S. Patent

{uoisny)
NOISIDIO YN

{uounjoauod)
43V INdLNO

Lo

B |BRIUL Tj2UL) B1eg

[UMGPINGS

{sindut sassasoud 1odey U PRI 1S4}
SHIAVT NIQAIH

z00T

saseiq snjd
(S TPIM O (T T D) A0 SuBiam

sasel snid

FS'elM o (T T EIm s1uBiam

P T

T

dsaweled uonsuny co.sm.).mu_q |

saseig snyd
'y m %, 1 {T'TZIM SiBiam

67 TIZM O T T TIM siuBiam

saseiq snjd

R

IR

SLOT

US 12,353,987 B1

Sheet 15 of 23

Jul. 8, 2025

U.S. Patent

ST

F‘*mﬁ_mwm

1Ll P

W e
L g
2|
e N .\,v, gM
e / 2
7 i) ﬂ
2011 / @
o
<
W

[Jeisia) paieys |
| IS et

U.S. Patent Jul. 8, 2025 Sheet 16 of 23 US 12,353,987 Bl

INPUT-INBOUND Complefe value-setofx values
1204 assembled (including Xststate
S - variable ifavailable)
PR ¥ \\N""Ns
INPUT-SPLIT The x vaiue_s are} | Thex value§ are The x values
1202 separated inlo separated info S A
- o . - remain in a single
. _p | disjointnewvalue| | overlapping new
P value set.
sets. value sels

INPUT-XFER
For each value se 1204
/
{
\\

EN

Transfer modified value se
to Neural Network

implemented on the Hub-

and-Spoke logic circuits

e e e NG en e v i

sgtto proces:

Yes

Foreach x value

in the current
value set

INPUT-EDIT No C;ther)
4203 - value fo &
{ \P@V
"
““““ o Yes

One or more x-values can be used
- - No- - #ilo create new quantities as dictate
by the underlying process

I x value text?

Yes

One or more of the x-values must

be transformed into one or more

scalar numeric values by replacing

the textwith the vector distance(s)
fo foundational prompi(s)

¥

¥

Using a just-arrived value fo update a corresponding time
series based value (e.g. a moving-average number or ar]
auto-regressive fype of weighted difference); the time-
series version of an x is a differentx {the setofinput
values fed to the machine-learning is increased).

Runs on on-board CPU Ei, 12A

U.S. Patent

INPUT-XFER

/INFERENCE-PROCESS

Jul. 8, 2025

Sheet 17 of 23

Modified value sels
transferred to Neural
Network implemented on
the Hub-and-Spoke logic
clreuits

¥

Each valus setisfed toils
own Inference Engine

1208

US 12,353,987 B1

g s

The Hub in this firstLayer o
this inference Engine feeds)
its ¥ values to fis neurons

The Hub in this firstLayer o
this Inference Engine feeds|
its x values fo its neurons

The Hub in this first Layer o
this Inference Engine feeds
its x values fo its neurons

The Hub in this firstLayer o
this Inference Engine feeds
its x values fo ifs neurons

kA

¥

T

¥

4

This Hub waits untif all
neurons have provided

This Hub waits unfil al
neurons have provided

This Hub waits unfil al!
neurons have provided

This Hub waits untit all
neurons have provided

The Hub in this Layer of thig
Inference Engine feedsthe
results ofthe previous Laye

fo ifs neurons

results and then sends the results and then sends the resulis and then sends the resufts and then sends the
results to the Hub in the results fo the Hubin the resullsto the Hub inthe resuls fo the Hub in the
nextlayer nextlayer nextlayer nextlLayer
¥ v ¥ ¥
The Hub in this Layerofthig

The Hub in this Layer of thid
inference Engine feeds the
results of the previousLaye

to its neurons

The Hub in this Layer ofthig
Inference Engine feeds the
results of the previous Laye

to s neurons

Inference Engine feeds the
resulls ofthe previousLaye
to ifs neurons

¥

v .

T

4

This Hub wails until all

This Hub walls unfil all
neurons have provided
results

This Hub waits until all
neurons have provided
results

This Hub waits until all
neurons have provided
results

neurons have provided
results
*\"'”‘»m.\“.

The results fromall the final Layers ofthe
Inference Engines are received, and a dala
fusion process {a weighted average, a
convolution, or a look-up table with a fused
answer for every combination of final values)
is run fo compute the uitimate answer.

¥
The final answer is then converted via an in-
menory reference fo a state-change action.
This is then provided fo the on-board CPU
which may then send an alerton state-
changes of certain types as specified in the
table, and the new stale feedback fo the Xst
State Variable in the INPUT-INBOUND step.

Runs on the Hub-and-Spoke logic circuits

FiG. 128

FUSION-DECISION-ALERT
1208

US 12,353,987 B1

Sheet 18 of 23

Jul. 8, 2025

£Lold
==
: B QS
SNOYMEN e 24
pue sgnH aendosdde s yoeL o 3
10 Alowew {e00] Ul siejaweled HHOLS-GYOT 3 Ac_ua
UORIUN UCHBAIOR PUE ‘Saselq £ Q
‘g Bram 0} saepdn 810G YA
4
a7 g0l
\\\ 1.// HIAX-AVOT
“
m
;
i
i
|
sigjaieled
JO0N HONRUN UOJBANOE PUE ‘S358I1G IA0N
NNY J0) PUBLIOD |a—S8A—< BULLUOOEAH e i ‘S1UB1am ‘$21B0j0d0) UOINBU le—| NNMY 0 PUBLILICD
JNNSTH snss| ! ‘satfiojodoy gny ‘ABojoda sehe) NMCO-LNHS enss] m
01 seepdn sgrH O} JSUBIL . (B BIESUBM MW
8
o
_ | N W 3
oN W | Q
! | M sigaweied <
b GESHEM - | (8 10 UI0S)
Qv=HY-0D pueg [<-88) :

srepdn ue Bugesipul
panasal jeublg

zost N
W0 4

\ /

N _~
A IENERE wu
sigpaweled HOV-VOT . {8 30 awos i
e T TR syepdn ! Buiigrou IR 10y ejqepeAs 3
LogL | teufs pusg saiepdn N5
OZ:OmZT%OJ M
n
~

o 1
F SIEIS HEM [N |

U.S. Patent

U.S. Patent Jul. 8, 2025 Sheet 19 of 23 US 12,353,987 Bl

Activation Function

+5.0

+4.0

+3.41

1401 %
AN —— *1.0

~10.0 F-28 400 20 #0460 480 4100

~1.0
=20
<20
-4.0
5.0

FiG.14

U.S. Patent Jul. 8, 2025 Sheet 20 of 23 US 12,353,987 Bl

/"\\
1501 \
¥
Open
¥
=gt
From g ze— 1503,
Shared Register ;;g’f{;g—:_wwl)
ol /
A ¢
1502 Close S/
SKIP
S 1505,
» .
w4 w3 w2 wi
1504 ;
‘ 1 b X1
N /
~— 0 U U Y
‘‘‘‘ B w4 . W3 W2 Wi 5
; ri 1t X2
00Uy | ;
i | !
| E ™
Clout) 4 bit adder cfin) |9 V F]
vx{4[w3l w2 | wi]
: 1 I 11 X3 |
Islis}ls O
il \ i L mj_t
g , R e
" . I
1 Clout) 4 bit adder Clin) |- : R —~’o
s ; jour
| wa w3 | w2 wi
! : : & 7 - : X4 3 1506
IS J T
L] ‘ | c1 -

%'1
DELAY

5

—— clowt) 4 bitadder clin}—9 : TR L
s 1 I

INOQ

Bls L Uj FIG. 15A
S iw M o el <D_jwwww o

US 12,353,987 B1

Sheet 21 of 23

Jul. 8, 2025

U.S. Patent

/\

481 "Oid

e
(
€051

InL={17)0

e B ‘ {1 Zjuldo o wimal) UoLUNg UOBEALDY

48U 0129 BL0 (T'Z) 40 SHUY e HIYS T

[

UOINBU YOBA UIYIAM [BLIRS PUE SUCINBU [|E S50I08 uonemndwios (o) e

ON-—

SOA

coade {1
JO SUQ 6 Jopio Y&y

&
i

(tz)g + Mﬂ_am = {124

LY

(Brzimxex) +(1T={12h

(g 17mxex) +{T e ={1'2)

El

L3

(LT omx o+ (T2 =N

73

(9 TTImxox) + (T2l = (1T}

Y

3

(STZIMX X} +{T 2 = (1T

A

T UM+ T2 ={17)

Y

El

+
3

(eveimxex)+ (T ={172)
)+

{Z'rimxex) +(ty = (17

o

)
ry
A
(TTOMmxTX= {17}
ry

IS = {12}

ed Uahke|yoea uy

{T'zin

{ZZIN #

(ezin g

rein —

(2178 (6 TM-{6TTOM BX—TX

NZa-(T'0a (w2~ (T2
ral]

isibay
paunys

Aowan
Paibys {ogo

U.S. Patent

Jul. 8, 2025

On-Board
Processor
triggers
activity

reprogramming

2

Sheet 22 of 23

P

flag for this hub

Yes
¥

Set reprogramming
hold flag for all
neurons of this hub

7
Copy new data
blotks from global
memory to this
hub's neurons’
shared registers

ki

Copy this hub’s
routing instructions
from global to local

memory

Reset
reprogramming flag
for this hub

FiG. 15C

Set restart hold flag
for all neurons of
this hub

%

Clear

reprogramming hold

flag for all neurons
of this hub

Copy inputs to this
hub’s neurons from
global memory

Clear restart hold
flag for all newrons
of this hub

Wait unti all newron
done flags for this
hub are true

Copy this hub's
neurons’ outputs to
global memory

Trigger hub of next
fayer

US 12,353,987 B1

¥

Test and trigger
another sub-
network if
appropriate

US 12,353,987 B1

Sheet 23 of 23

Jul. 8, 2025

U.S. Patent

< =

\ < =

AV

91 Old

Fuiyoiem

umoudun

=

Vil NN

T3 019X
FUVAINGD

PN 03 IX
UVINOD

€15 018X T 018X
AYVIINOD mm,qm_ZOu\

FHVdINOD

o k4
%, 8x / \A
.. e
<

-
/

LA 016X
FUVINGD

9 01 ZX
FYVdNOD \Ww

d

——ox—(

€101 9X
FAVINOD

ue Jaiessn

Y T

TTH 01 ¥X 0T 03 £X 63 01 Nx/) 01 £X
JUYIINGD FUVANOD mm#_zg\
7
X

. &
5% X
N

% 4
ﬂ mx/ S~ \.x,,,.

\
A
<

S 011X
FYVINOD

i 01 pX
FUVIINOD

>

2 01 £X
i.g«mx“(a ——
3dvd §OU¢A

\\\

jenba Jo uey; £897

!/Iarﬁ\m\\\\
yoiex N

(.liwxxi\.) ——
f/ Fuvanen)

US 12,353,987 B1

1
MODULAR SoC AI/ML INFERENCE ENGINE
WITH DYNAMIC UPDATES USING A
HUB-AND-SPOKE TOPOLOGY AT EACH
NEURAL NETWORK LAYER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a U.S. Non-Provisional patent appli-
cation that claims priority to U.S. Provisional Patent Appli-
cation No. 63/661,946 (the *946 Provisional), filed on Jun.
20, 2024 titled “A Deep Learning General Neural Network
Execution Engine”, the contents of which are hereby fully
incorporated by reference in its entirety.

FIELD OF THE EMBODIMENTS

The present invention relates to a System-on-a-Chip
(SoC) artificial intelligence/machine learning (AI/ML) hard-
ware (or software) inference engine that performs inferenc-
ing for a previously-defined (trained) AI/ML model supplied
to it, in other words, a system for computing the model’s
answer (prediction) for every new input data instance sent to
it, even sequentially in real-time. The system innovatively
supports in-the-field, while running, model design changes
and model parameter updates via a new implementation of
neural network topologies, while at the same time exploiting
these topologies to reduce hardware build costs, mainte-
nance costs, and runtime energy consumption. Note that the
while-running dynamic model alterations and updates can be
comprehensive: changes to shape (width/depth), activation
functions, all weights and biases, and more are supported;
remarkably the system can self-assess, self-learn, and sug-
gest changes on its own, as well as responding to change
orders from external systems that are re-estimating (perhaps
continually) the base model. Specifically the innovation
relates to a modular System-on-a-Chip (SoC) interference
engine built using a hub-and-spoke topology at each neural
network layer. This topology is the key to supporting the
adaptive model-changing capability, allowing self-improve-
ment, and achieving lower costs; the topology is referred to
as Chip Hierarchical Architecture MachinE Learning Engine
Optimizing Nodes (CHAMELEON).

While the title is descriptive and in accordance with the
USPTO rules that impose limitations on title length, the
following longer one is believed to be more descriptive and
accurate: “A Deep Learning General Neural Network
Execution Engine for Inference, Tuning, and On-the-Fly
Model Changes Implemented as a System-on-a-Chip, Fea-
turing Economical Wire-Interconnect Topologies for
Reduced Manufacturing Costs and Power Requirements
plus Configurable Runtime-Adaptive Data-Driven Routing,
Computational Layer Sequencing, and Circuit Segregation,
thereby Facilitating a High Degree of Parallel Processing,
Dynamic Computational Graphs, Shape, Structure, and
Width/Depth Changes, Self-Diagnosed or Ordered by Exter-
nal Servers, including Define-by-Run and Dynamic Com-
putational Graphs, plus Ensemble Construction and Sub-
Model Interconnects Allowing Even Recursive Invocation.

BACKGROUND OF THE EMBODIMENTS

It is harder to develop a recipe than it is to use it. The same
is true for machine learning (ML) models. This has impor-
tant real-world implications and suggests some dramatic

10

15

20

25

30

35

40

45

50

55

60

65

2

improvements to the current state-of-the-art that have not
been sufficiently exploited by AI/ML engineers. Our inven-
tion changes that.

If a recipe proves too hard to follow, home cooks naturally
simplify it in various ways, trying not to lose the appeal of
the finished dish. That is not the most sophisticated
approach-perhaps better kitchen tools (that might not have
been invented yet!) are the right answer. This describes, at
least partially, the less-than-optimal current state of AI/ML.
Complex ML models are in fact simplified by engineers
before they are run, a process referred to as distillation.
Distillation is good, we embrace it, but we have gone much
further and invented new tooling that provides a vastly
superior solution.

ML model development is known as “training and tuning”
(often just “training”); subsequent use of the model, in the
real world on newly presented data, is known as “inference”.
Of course, the entire premise is this: data that runs through
the model during inference should closely resemble data
used to train (build) the model.

This is assured, or at least assumed, for the following
reason: the underlying data generation or collection pro-
cesses used to assemble the training data are the same as
those which produce data for inference. When this ceases to
be the case, as might be observed by looking at (and
statistically testing for changes) the actual incoming data, or
noticing that using the model for inference no longer pro-
duces acceptably accurate answers, re-training is necessary.
Re-training is as resource intensive and difficult as the
original training: it requires considerable computing power
and large amounts of data.

Running the model in inference mode requires far less
effort, and of course (by definition) only the newly-arriving
individual data sets, presented one-at-a-time, are needed.
Effort is further reduced by distillation, as mentioned above,
but, while results are produced faster, this does only a little
to control costs and nothing to help with re-training.

Note that, to address some of this engineering pain, R&D
in the industry has heretofore been focused on developing
specialized hardware, for both training and inference, often
installed in limited-power devices running “at the edge”.
The manufacturing costs for such specialized hardware are
considerable, both because the hardware is in fact special-
ized, and because it is complex. But even worse than the
high initial cost, while power consumption might be less,
nothing in this approach—the current approach before our
invention—reduces the re-training burden and coordination
effort. Not being able to quickly, in the field, update a model
without system down time, or complex maintenance proce-
dures, really hampers the spread of AI/ML to every device
everywhere, the clear goal of the industry.

Novel aspects of the disclosure are able to be more easily
understood through the presentation of simplified Telecom-
munications Industry examples presented in figures and
detailed throughout the disclosure.

Prior Art FNN and RNN in an Example of a Telecommu-
nications Company (TELCO) Monitoring System

A feed-forward neural network (FNN) is one of the broad
types of artificial neural networks, characterized by the
direction of the flow of information from layer to layer. This
flow is uni-directional, meaning that the information in the
model flows in only one direction-forward—from the input
layer through the hidden layers and finally to the output
layer, without any cycles or loops (in contrast to recurrent
neural networks, which have information loop-backs.

FIG. 1 (PRIOR ART) shows a standard feed-forward
neural network, with 2 hidden layers (4 neurons per layer),

US 12,353,987 B1

3

for predicting state changes. The FNN tracks the state of an
external running system, which for illustrative purposes is a
telecommunication network, referred to as the TELCO
(“Telecommunications Company”) Referring to the
system as the TELCO clarifies that discussions herein are
directed at the goal of predicting the operational state of the
telecommunications network, which is what the FNN is
tracking (or “watching”), as opposed to referring to an
implementation state of the FNN itself. The FNN probabi-
listically tracks the TELCO operational state, which means
that some of the FNN’s predictions will inherently be
inaccurate, though a high quantity of inaccuracies indicates
that the FNN needs to be retrained or updated. The default
properly-operating state of the TELCO is denoted as
GREEN, an intermediate (less than perfectly operating) state
is denoted by YELLOW, and a failure state is RED. When
the state is GREEN all is operating smoothly. When the state
is YELLOW, some troubles have been detected (e. g.,
hardware failures, software errors, message traffic conges-
tion, dropped messages, hacking attacks, etc.) but the
TELCO is still operating within its operational require-
ments.

In actual practice for the TELCO, there are hundreds of
input measurements, most likely including network call
volume for every pair of countries, plus statistics on call
duration, echo, jitter, dropped packets, etc. for every pair.
The machine learning model needs to know the monitored
system’s current state, which takes the value “Unknown” if
in fact the state cannot be determined. In FIG. 1A (PRIOR
ART) these inputs are represented in this simplified example
by X1 through X8. In addition to these 8 input data values,
the current state of the system being monitored needs to be
an input, and that is represented by Xst. These nine X values
arriving at model nodes form the Input Layer of the Feed
Forward Neural Network, as shown.

Completing the Neural Network, there are two hidden
layers (Layers 2 and 3), the Output Layer (where the
predicted state of the system being monitored is produced),
and finally a Decision Layer where an Alert is generated in
certain circumstances dictated by the concerns of the man-
agers of the system being monitored (the TELCO). For
example, a change of the current state to a predicted state of
About to Fail or to Failed would generate an alert (the exact
nature of the Alert logic is not important for this illustration).

For the neural network to do its computations, the two
hidden layers (Layers 2 and 3), the Output Layer (Layer 4),
and the Decision Layer (Layer 5) need the weights, and bias
values, and activation function to be used by each neuron of
each layer (this is the standard way neural networks pro-
ceed). These inputs 101 arrive at the machine implementing
this neural network. In this example, we assume Layer 2 and
Layer 3 (the hidden layers) use 4 neurons each, and (by the
definition of possible states and the alert generation
required) Layer 4 has 5 neurons, and Layer 5 (the Alert
layer) has one.

By the definition of a Neural Network, the outputs from
one layer become the inputs to the next layer, and this can
be seen in FIG. 1A (PRIOR ART) by the arrows connecting
the neurons in each layer (a “fully connected network™),
which we depict in the drawing as N(Layer #, Neuron #),
e.g., N(2,1), N(2,2), etc. Extending this notation to the
weights (as well as the bias values and activation function
parameter), we use the notation W(Layer #, neuron #,
Weight #) to denote Weights (and a similar notation could be
used for the bias values and activation function parameters),
but we do not show that in our drawings since it adds nothing
to the exposition). Of course, as just mentioned regarding

20

25

35

40

45

55

4

the outputs from a particular layer being the inputs to the
next layer, the maximum value of neuron # in W(L, neuron
#, Weight #) must also be the maximum value of Weight #
in W(L+1, neuron #, Weight #).

The complexity of the interconnections, and hence the
large number of wires needed to implement the neural
network using the current state-of-the-art engineering can be
easily understood from the following table:

Inbound Connections 8
Outbound Connections 8
Inbound Connections 8 (equal to above)
Outbound Connections 4
Inbound Connections
Outbound Connections
Inbound Connections
Outbound Connections
Inbound Connections
Outbound Connections

Input Layer-
Data Signal Lines
Hidden Layer 1

Hidden Layer 2 4 (equal to above)
4

Output Layer 4 (equal to above)

Alert Layer 5 (equal to above)
2

If in fact the model predicts a state change, this prediction
needs to not only generate an Alert, but it might also
(depending on the exact mechanics of the TELCO, the
system being monitored), need to be supplied to the com-
puting stage that handles the input Xst, and the computing
stage that informs the Decision Layer alert logic of the
current state—this is shown by 102, and is also the reason
that the Alert Layer has 2 outbound connections as noted in
the table above.

Recurrent neural networks (RNNis) are a class of artificial
neural networks for sequential data processing. Unlike feed-
forward neural networks, which process data in a single
pass, RNNs process data across multiple time steps, making
them well-adapted for modeling and processing text, speech,
and time series.

The fundamental building block of an RNN is the recur-
rent unit. This unit maintains a hidden state, essentially a
form of memory, which is updated at each time step based
on the current input and the previous hidden state. This
feedback loop allows the network to learn from past inputs
and incorporate that knowledge into its current processing.

FIG. 2 (PRIOR ART) shows a recurrent neural network
(RNN), with 2 hidden layers for predicting state changes.
FIG. 1B is identical in concept to the FNN of FIG. 1A
(PRIOR ART), except that an RNN (Recurrent Neural
Network) is diagrammed. Nothing has been changed from
FIG. 1A and the inputs 201 and 202 play the exact same role
as inputs 101 and 102, except that each neuron in Layers 2
and 3 (the two hidden layers) feedback their output values to
themselves, implementing the “memory” aspect of RNNs.
Other feedback loops could be added, for example, data feed
from neurons in Layer 3 back to neurons in Layer 2 without
impacting the point we are making with these diagrams.
RNNs add additional wiring complexity and increase the
total wire count (to accommodate the feedback loops); there
are no other conceptual differences.

RELATED ART

US20160358070A1 discloses tuning a neural network
which may include selecting a portion of a first neural
network for modification to increase computational effi-
ciency and generating, using a processor, a second neural
network based upon the first neural network by modifying
the selected portion of the first neural network while offline.

WO2017038104A1 discloses an installation device
designed to allow for the installing of an algorithm which
executes machine learning in an embedded chip.

US 12,353,987 B1

5

U.S. Pat. No. 11,526,746B2 discloses state-based learning
using one or more adaptive response states of an artificial
intelligence system.

US20200342291A1 discloses a method for selecting
between multiple neural networks. U.S. Pat. No. 11,461,
637B2 discloses a generated algorithm used by a neural
network that is captured during the execution of an iteration
of the neural network.

US20180144244A1 discloses techniques for training a
deep neural network from user interaction workflow activi-
ties occurring among distributed computing devices U.S.
Pat. No. 9,792,397B1 discloses designing SoC using Al and
Reinforcement Learning (RL) techniques.

Additional noteworthy references include
US20190266488A1, US20160062947A1, U.S. Pat. No.
10,372,859B2, and W02022203809A1. Further, numerous
articles and books were noted in the *946 Provisional, which
has been incorporated herein.

SUMMARY OF THE EMBODIMENTS

In general, we have invented a new type of inference
engine employing a circuit design that dramatically lowers
manufacturing costs and energy consumption, while also
adding a remarkable feature: in-the-field model modifica-
tions (even substantial ones) and parameter value changes
can be implemented without re-programming, just by load-
ing simple data constants.

It is important to understand that these modifications can
be triggered manually or automatically by updates to the
trained model done by the model’s managers or engineers,
done in fact on any local, remote, or cloud computer, located
in any data center. With our circuitry, the modifications can
be triggered automatically by various data conditions (sta-
tistically significant observed changes in the distribution of
inputs) or model results observed (lack of accuracy, for
instance), and then acted upon, all by the inference engine
itself. This, along with other run-time adaptations, like early
stopping of the neural network and skipping to the final
inference output (when some but not all of the layers of the
network have been exercised) achieves what is sometimes
called “dynamic computational graphs” or “define-by-run”,
widely recognized as important but never before achieved in
hardware.

Without our invention, manufacturers of “at the edge” Al
inference engines face two choices, both quite sub-optimal.
A first choice is to use an FPGA (“Field Programmable Gate
Array”) to allow for modifications of the machine learning
model post-training. While this option has been much dis-
cussed in the industry, FPGAs are expensive and power-
hungry: every wiring cross-connect is active. Engineers
often joke about this situation noting “you want to buy the
logic but you pay for the wires.” The second choice is to use
an ASIC (“Application-Specific Integrated Circuit”). An
ASIC is cheap to build (once the initial fabrication is done
and the cost amortized) and run, but it is not modifiable once
it is manufactured.

Our invention is the first to hit the sweet spot: a circuit
topology that, when combined with modest CPUs, is fully
adjustable via simple data parameter loading, loading that is
fast enough to be slotted in while the inference engine is
running, processing input data sets. While running in the
real-world as an interference engine, for example, the fol-
lowing can be done: layers can be added to a deep learning
module, more neurons can be added to a layer, a FNN can
be converted to a RNN or a convolution neural network
(CNN), more receptor fields can be added to a CNN,

10

15

20

25

30

35

40

45

50

55

60

65

6

additional inference models can be instantiated to create an
ensemble, a Hopfield network can be run as an alternative to
a deep-learning one, a number of inputs for each inference
instance can be increased or decreased, and transformed
versions (like Box-Cox) or lagged (like nth-order difference)
versions of input variables can be added to the model. All of
the above can be done on a currently installed and running
chip when implementing our disclosed innovations. Our
basic engineering approach is to dramatically replicate
simple sub-circuits, not construct large complex ones.
Everything, especially circuit resets (which happen at every
data inference instance arrival), runs faster and consumes
much less power.

Our disclosure includes numerous non-conventional inno-
vative planks in the artificial Intelligence (Al) and System-
on-a-Chip (SOC) space, which include:

1) using real-time control logic referred to as a Halt/

Update Reload/Resume Interface (HURRI) protocol;

2) using sized (S, M, L, XL, and XXL) versions of SOC
hardware enabling application builders to control costs
by choosing a “right sized” application-specific inte-
grated circuit (ASIC) or field-programmable gate array
(FPGA), which is an approach referred to as Sized
Topology Architecture for New Data and Update Pro-
cessing (STAND-UP);

3) using a hub-and-spoke (“wagon wheel” or “star”)
topology at each layer of a neural network, which is
referred to as Chip Hierarchical Architecture MachinE
Learning Engine Optimizing Nodes (CHAMELEON);

4) configuring multiple machine learning models (post
training or re-training) to update multiple inference
execution engines, referred to as Multiple Inference
Unified Edge Training or (MINUET);

5) taking a parameterized approach to defining a flexible
family of linear splines to closely approximate standard
activation functions, referred to as Piecewise ReLU
(rectified linear unit) Dynamic Evaluator (PRELUDE);
and

6) enforcing quantization of input values and parameters
when the trained model was not distilled, thereby
limiting arithmetical and logical operations needed,
which is referred to as Reduced Arithmetic Instruction
Logic (RAIL).

The noted innovative planks yield combinative effects as
is expressed herein. For example, STAND-UP SoCs, “right-
sized” for the problem and budget at hand, allow unre-
stricted changes to weights, biases, activation functions,
number of layers, neurons-per-layer, and placement (addi-
tion and deletion) of recurrent feedback connections without
re-programming, accomplishing this with a fast data-load
step (expected to be only a few milliseconds in most cases)
controlled by the HURRI protocol. The reduction of total
wire count via CHAMELEON innovations, results in mak-
ing the “right sizing” of hardware per STAND-UP SoCs
much more economical. Given the interrelated nature of the
innovations, the disclosure has opted to guide discussions
from a CHAMELEON perspective, as evidenced by focus-
ing on conventional FNNs (FIG. 1A—PRIOR ART) and
RNNs (FIG. 1B—PRIOR ART), exposing their limitations
and the differences from our matching CHAMELEON
implementation (See FIG. 2A).

Accordingly, one aspect of the disclosure, referred to as
Chip Hierarchical Architecture MachinE Learning Engine
Optimizing Nodes (CHAMELEON), utilizes a hub-and-
spoke (“wagon wheel” or “star”) topology at each layer of
a neural network. The Hub at the center is a new type of
node, referred to as an H-node. With reference to FIG. 2A,

US 12,353,987 B1

7

an H-node hub is introduced at each layer, which dramati-
cally simplifies and reduces wire counts for layer-to-layer
communications by introducing (through the H-node hub)
neuron-to-neuron-in-the-same-layer coordination. Simply
put, H(L) collects all the computations (outputs) from the
neurons in Layer L. and forwards them in bulk over a single
wire connection to H(LL+1), where L+1 denotes the next
layer after L, which distributes them as inputs to the neurons
in Layer L+1. This exploits the fundamental fact that the
output of Layer L is the input of Layer L+1.

In CHAMELEON, neurons, which we call N-nodes, in a
layer are actively connected (typically full-duplex) to that
layer’s Hub center, and this Hub center H-node is actively
connected in simplex (half-duplex with no line turnaround
ever needed) to the Hub center H-node of the next layer in
a Feed Forward neural net, and in an RNN actively con-
nected as well to H-nodes at levels below the next level
(including connecting to itself) as the RNN design dictates.
As noted, CHAMELEON is an adaptation able to be utilized
to improve both FNN and RNN models.

As an alternative, Hub-to-neuron connections in a given
layer can be half-duplex, which reduces wires needed in the
circuit at the expense of using clock cycles to implement line
turn-arounds instead of reading the next input data instance,
but in some applications, the input data rate may be such that
this is a better choice.

Additional aspects of the disclosure relate to System-on-
a-Chip (SoC) AI/ML hardware. Specifically, the disclosure
allows for full implementations and on-the-fly modifications
of important machine learning inference applications. This
includes the running and optionally run-time adapting of
already-estimated machine learning models, continuously
on newly-arriving data as it is presented to the model.

One aspect of the disclosure is directed to a digital circuit
implementing a neural network inference engine. A digital
circuit can be implemented in pure hardware and/or as a
combination of hardware and software. In one embodiment,
the digital circuit is a SoC. The digital circuit includes
multiple layers of a neural network; the layers including at
least a first layer, a second layer, and a third layer (for ease
of exposition we consider only three layers in the following
explanation). The digital circuit also includes neurons in a
first neuron set, a second neuron set, and a third neuron set.
The first neuron set is in the first layer. The second neuron
set is in the second layer. The third neuron set is in the third
layer. The digital circuit includes a set of hub nodes includ-
ing a first hub node, a second hub node, and a third hub node.
The first neuron set is not directly connected to any of the
neurons in the second neuron set and the second neuron set
is not directly connected to any of the neurons in the third
neuron set. Neurons in the first neuron set are only con-
nected to the first hub node. Neurons in the second neuron
set are only connected to the second hub node. Neurons in
the third neuron set are only connected to the third hub node.
All data transfer between and among the layers takes place
hub-to-hub, such that data transfers between the first layer
and the second layer occur between the first hub node and
the second hub node and data transfers between the second
layer and the third layer occur between the second hub node
and the third hub node. The first hub node provides the first
set of neurons with all the data needed by the first set of
neurons to perform respective computations within the neu-
ral network. The second hub node provides the second set of
neurons with all the data needed by the second set of neurons
to perform respective computations within the neural net-
work. The third hub node provides the third set of neurons

10

15

20

25

30

35

40

45

50

55

60

65

8

with all the data needed by the third set of neurons to
perform respective computations within the neural network.

The advantages and objects of the disclosure are many.
Our invention is generally used after initial model AI/ML
training and tuning occurs. It features a near-universal
AI/ML inference engine, one that can run (“execute”) almost
any type of neural network (or even a decision tree model as
explained later) on complex, real-world data, supporting
multiple instances and ensembles, one that can run in the
cloud, be replicated many times in a data center (one engine
per server, for example), or installed at the “edge”. The
disclosure enables engineering that dramatically lowers
power consumption, reduces operational costs, speeds
execution time, and lowers manufacturing costs (via wire
count and wire length reduction, plus circuit module prox-
imity and parallel computing). In one embodiment, proce-
dures automatically report errors, track prediction-accuracy
from feedback, flag problems that result from input data
distribution changes, and respond adaptively (even on a
non-field-programmable ASIC) by adjusting the model in
real-time (for a quick fix) without human intervention and
without halting work on newly-arriving inference instances,
while simultaneously sending telemetry data upstream to
servers for more intensive analysis and remediation. Our
disclosure permits implementation designs that do not
require FPGAs, but allow full flexibility, expansion, adap-
tations, and modifications while running on an ASIC, via
simple parameter loading without code changes. New
parameters can come from scheduled, continuous, or ad-hoc
downloads from remote (possibly in the cloud) servers. Note
that, with current-state-of-the-art implementations, ASICs
run only one model type, and are immutable, having none of
this flexibility.

In one embodiment, an AI/ML model compiler and loader
can distill and optimize the model specifically for various
choices of target hardware, saving manual time and effort.
Flexible topologies are enabled, allowing multiple configu-
ration sizes tied to manufacturing costs and price-points
across the product line, supporting module-by-module
choice of parallel (for faster execution) or serial computing,
depending on input data rates and hardware. The disclosure
permits advanced data handling and run-time monitoring,
supporting real-time continuous (streaming) input sets (en-
compassing numeric, categorical, ordinal, audio, video,
images, and text, including fast on-the-fly vectorization of
text chunks via Large Language Model Embeddings, known
as LLM-embeddings), plus internal tracking and decision-
making to trigger early termination of an inference when an
estimated accuracy threshold has been met before the model
run completes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 (PRIOR ART) shows a standard feed-forward
neural network, with two hidden layers (four neurons per
layer), for predicting state changes.

FIG. 2 (PRIOR ART) shows a standard recurrent neural
network, with two hidden layers (four neurons per layer), for
predicting state changes.

FIG. 3A shows a neural network corresponding to that of
FIG. 1 and FIG. 2 other than using an H-node, according to
at least some embodiments disclosed herein.

FIG. 3B shows an optional enhancement to the structure
shown in FIG. 3A, which adds shared memory, according to
at least some embodiments disclosed herein.

FIG. 3C shows a variation of FIG. 3B where the process-
ing at the Xst node handles preparation of model inputs from

US 12,353,987 B1

9

the data instance presented for inference, according to at
least some embodiments disclosed herein.

FIG. 3D shows a detailed view of a hub exhibiting further
wire savings and potentially better execution time utilization
at the hub by employing shared memory registers, according
to at least some embodiments disclosed herein.

FIG. 4 shows a wiring diagram of a hub with 4 neurons,
according to at least some embodiments disclosed herein.

FIG. 5 shows alternate topologies for connecting hubs,
according to at least some embodiments disclosed herein.

FIG. 6 shows decisions being made (for example) by the
first two hubs, according to at least some embodiments
disclosed herein.

FIG. 7A shows one hub with four neurons in use and four
unused spare hubs, according to at least some embodiments
disclosed herein.

FIG. 7B shows a first hub with four neurons that needs
two additional neurons so a spare Hub is turned into a helper
Hub, according to at least some embodiments disclosed
herein.

FIG. 8 shows a define-by-run decision that changes
weights, biases, and activation function parameters, accord-
ing to at least some embodiments disclosed herein.

FIG. 9 shows a traditional CNN with neurons fully
connected, according to at least some embodiments dis-
closed herein.

FIG. 10 shows an enhanced CNN using hubs with fewer
wires than a traditional CNN, according to at least some
embodiments disclosed herein.

FIG. 11 shows a traditional Hopfield network with all
neurons interconnected, according to at least some embodi-
ments disclosed herein.

FIG. 12A shows a flowchart of data inputting processes
that partitions input to accommodate CNNs, according to at
least some embodiments disclosed herein.

FIG. 12B shows a flowchart of data splitting, routing,
running, and re-assembly, according to at least some
embodiments disclosed herein.

FIG. 13 shows a flowchart of an external server in the
hybrid machine protocol signaling that new parameters are
ready, according to at least some embodiments disclosed
herein.

FIG. 14 shows a linear-spline-based activation function,
according to at least some embodiments disclosed herein.

FIG. 15A shows a wiring diagram of a serial processed
neuron, according to at least some embodiments disclosed
herein.

FIG. 15B shows a logical diagram of a serial processed
neuron, according to at least some embodiments disclosed
herein.

FIG. 15C shows a logical diagram of a Hub, according to
at least some embodiments disclosed herein.

FIG. 16 shows a decision tree machine learning inference
engine, according to at least some embodiments disclosed
herein.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The preferred embodiments of the present invention will
now be described with reference to the drawings. Identical
elements in the various figures may be identified with the
same reference numerals. Reference will now be made in
detail to each embodiment of the present invention. Such
embodiments are provided by way of explanation of the
present invention, which is not intended to be limited
thereto. In fact, those of ordinary skill in the art may

5

10

15

20

25

30

35

40

45

50

55

60

65

10

appreciate upon reading the present specification and view-
ing the present drawings that various modifications and
variations can be made thereto.

As used herein, the singular forms “a,” “an,” and “the,”
are intended to include the plural forms as well, unless the
context clearly indicates otherwise.

The phrase “and/or,” as used herein in the specification
and in the claims, should be understood to mean “either or
both” of the elements so conjoined, i.e., elements that are
conjunctively present in some cases and disjunctively pres-
ent in other cases. Thus, as a non-limiting example, a
reference to “A and/or B”, when used in conjunction with
open-ended language such as “comprising” can refer, in one
embodiment, to A only (optionally including elements other
than B); in another embodiment, to B only (optionally
including elements other than A); in yet another embodi-
ment, to both A and B (optionally including other elements);
etc.

As used herein in the specification and in the claims, the
phrase “at least one,” in reference to a list of one or more
elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of
elements and not excluding any combinations of elements in
the list of elements. This definition also allows that elements
may optionally be present other than the elements specifi-
cally identified within the list of elements to which the
phrase “at least one” refers, whether related or unrelated to
those elements specifically identified. Thus, as a non-limit-
ing example, “at least one of A and B” (or, equivalently, “at
least one of A or B,” or, equivalently “at least one of A and/or
B”) can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and option-
ally including elements other than B); in another embodi-
ment, to at least one, optionally including more than one, B,
with no A present (and optionally including elements other
than A); in yet another embodiment, to at least one, option-
ally including more than one, A, and at least one, optionally
including more than one, B (and optionally including other
elements); etc.

Aspects of the machine described herein are designed to
allow full implementations and on-the-fly modifications of
important machine learning inference applications. This
includes the running and optionally run-time adaptation as
well as modifications and expansions of already-estimated
machine learning models, continuously as newly arriving
data is presented to the model. This also includes optional
detecting, and optionally signaling, the need for such adap-
tations, modifications, and expansions, based on accuracy
measurements when real-world results are available for
comparison to the machine’s output (typically predictions)
as well as observed changes in the input data distribution
that appears, or is statistically verified, as significant. (Sets
of input data and the corresponding real-world results can
also be used to construct “gold standards” for further model
training.) The machine handles models in use in industry
today, in substantial generality and with very few size
constraints. In particular, it handles single instances and
ensembles of real-time responsive machine-learning infer-
ence engines consisting of feed-forward deep neural net-
works, deep recurrent neural networks (RNNs), deep con-
volutional neural networks (CNNs), and/or decision trees
(including boosted trees and ensembles of trees), in arbitrary
and optionally mixed configurations. It also handles less-
used models like Hopfield networks and Adaptive Reso-
nance Theory (ART) networks, and newer “experimental”

2 <

US 12,353,987 B1

11

models not yet in general use, like Kolmogorov-Arnold
Networks (KAN). In fact, any arrangement of intercon-
nected neurons with input processing (simple arithmetic
operations on input values) at each neuron, and forwarding
of the results to other neurons, can be handled.

Feed-Forward, RNNs, CNNs, and Decision Trees cover
the vast majority of actually-used machine learning tech-
niques, but in fact, our invention is flexible enough to also
run more esoteric multi-instance models: Federated, Coop-
erating, Adversarial, and Swarm collections (where each
instance might be distributed on various inference engine
platforms, or even all running locally on our SoC).

Model estimation, and crucially model updating, is typi-
cally done on large computers customarily deployed off-site
in organizational data centers, or in the cloud, not necessar-
ily close to the inference engine hardware. This leads to
difficulties in scheduling model updates. Our invention
solves this problem, and introduces a stable, robust solution
(the HURRI protocol) to the engineering state-of-the-art. In
addition to HURRI, which handles external-computer com-
munications to our machine, our machine can also commu-
nicate operational details and results, as well as uploading
“gold standard” data it has derived, back to the external-
computer.

The invention is widely applicable. It is particularly
well-suited for both prediction and control of state-changes
in multi-stage, multi-use, and multi-tenant operations,
including finite-state machines and generalizations thereof.
We use state-change-prediction applications as expository
examples in this filing. Note that most real-world running
operational systems, whether in a data center or at the edge,
record and often report their current state or state-change;

when our machine can tap into these state-or-state-change
records, which would be straightforward when such records
are externally reported, our machine’s capability to measure
and react to observed prediction accuracy comes into play,
as does our machine further reporting on this, thus partici-
pating in a closed-loop system that is robust, perhaps even
impervious, or at least resistant, to unexpected real-world
changes and shocks, and resilient to their potentially del-
eterious effects.

Specific examples of state-change-predictive applications
are real-time telephony, call-center, and computer network
systems-monitoring using diagnostic signal processing
machines for extraction of, and alerting on, changes to
system status, separating signal from noise, via the ingestion
of rapidly-arriving system message packets, individually
containing or combining numeric, categorical, ordinal, text,
image, audio, and video data. Such message packets are
generated simultaneously and continuously, reported via
telemetry or streaming transmissions from multiple pro-
cesses, some processes being dependent on other processes
while some are fully independent. The message content may
reflect routine one-time or periodic status reports, specific
events (“triggers”), or ad-hoc reports of unusual or aberrant
behavior, system load, or system failure, and inter-mixes of
these, with certain messages reflecting some operations and
other messages reflecting other operations. Note that not all
messages are based on physical events or measurements: a
customer complaint, inquiry, or support request expressing
frustration, doubt, worry, etc., perhaps with obscenities
added (if text), or those properties plus voice-raising/yelling
if audio, are significant happenings. Operations may be
logically or physically diverse, possibly redundant, with
some doing the same processing as others and some doing
processing that is unique. Our invention is well-suited to all
of these configurations, and in fact is directed at allowing

15

25

30

35

40

45

55

12

system owners to “get ahead” of system problems. The
ability of our invention to capture and store a history of such
message events enhances its ability to adapt the inference,
and report the situation, as previously discussed.

By instantiating, in a single SoC, multiple instances of the
entire neural network, or specific subsets and/or modifica-
tions thereof, as well as multiple (different) neural networks,
our invention can additionally (beyond the configurations
cited above) support the following, integrating with on-
board processors as necessary:

Facet-Masking (selectively running the model multiple
times, each time leaving out one or more input features,
often balancing specific subsets of inputs, to potentially
increase accuracy by decreasing signal-corrupting
noise).

Time Series Pre-Processing (avoiding the use of RNNs
with time series data by augmenting the input data itself
with lagged versions [autoregressive] or time-
weighted—perhaps self-correcting based on observed
errors—averages [exponential smoothing, Kalman fil-
tering, moving-average models| of prior input data,
done at the input step, not inside the model itself).

Dense Vector Encoding (turning textual data input into
dense numeric vectors called “embeddings” via Large
Language Models-known as [LLMs-pre-trained, pre-
trained-then-fine-tuned, or custom-built-from-scratch,
or possibly with more than one LLM creating an
ensemble approach; this is particularly powerful when,
as part of the input process, individual “chunks” of
textual data—of any length—have their actual embed-
ding vectors replaced by each vector’s distance to one
or more “foundational” vectors, the foundational vec-
tors representing text explaining basic events or con-
ditions) as the input to the machine learning model).

Advanced ensemble techniques for data fusion and stack-
ing, including both weighted averaging and table-
driven optimal fusion derived from the theory of mono-
tone Boolean or n-ary functions, or a greedy
approximation to the optimal as well as a full second-
stage machine learning engine, a “meta-learner”, to do
the data fusion after “learning.”

Runtime chaining of multiple neural network inference
engines, which has not been widely adopted in general
practice due to conventional difficulties of actually
sequentially running multiple neural network inference
engines at any particular instance, especially in a real-
time data monitoring environment.

Furthermore, apart from the usual approach of employing
integer-only arithmetic via quantization, and some spline-
based approximation to various activation functions (as
discussed below), distillation of the trained model structure
will not be necessary if the SoC hardware-component
imposed limits on neuron counts (nodes or cells of the
circuit) and layer counts (interconnected collections of cells)
are met. Importantly, note that the limits themselves can be
set arbitrarily high by the SoC manufacturers; in fact, we
expect the marketplace to offer “sized” (S, M, L, XL, and
XXL) versions of the hardware, enabling application build-
ers to best control their costs by choosing a “right-sized”
ASIC or FPGA (with the ASIC implementation expected to
be the cost-leader). We call this approach to hardware sizing
“STAND-UP”: Sized Topology Architecture for New Data
and Update Processing.

Even more remarkably, STAND-UP SoCs allow unre-
stricted changes to weights, biases, activation functions,
number of layers, neurons-per-layer, and placement (addi-
tion and deletion) of recurrent feedback connections without

US 12,353,987 B1

13

re-programming, accomplishing this with a fast data-load
step (expected to be only a few milliseconds in most cases)
controlled by the HURRI protocol.

In the disclosure, Chip Hierarchical Architecture
MachinE Learning Engine Optimizing Nodes (CHAME-
LEON) is based on the use of a hub-and-spoke (“wagon
wheel” or “star”) topology at each layer of a neural network.
The Hub at the center is a new type of node, referred to as
an H-node. CHAMELEON results in substantial savings in
wires, which translates into lower manufacturing costs and
lower power requirements as elaborated upon herein.

With reference to FIG. 3A, a CHAMELEON hub-and-
spoke architecture is shown in accordance with embodi-
ments of the disclosure. FIG. 3A is for a TELCO and is
functionally equivalent to the FNN of FIG. 1A (PRIOR
ART) and the RNN of FIG. 1B. Accordingly, input 201 and
202 are used to process inputs and state changes.

H(L) collects all the computations (outputs) from the
neurons in Layer L. and forwards them in bulk over a single
wire connection to H(LL+1), where L+1 denotes the next
layer after L, which distributes them as inputs to the neurons
in Layer L+1 . . . exploiting the fundamental fact of standard
neural networks (FFs, RNNs, and convolutional neural
networks (CNNs) that the output of Layer L is the input to
Layer L+1.

Furthermore, the introduction of H(1), the first H-node
Hub, gives us the option to use the processing capabilities of
a limited-power central processing unit (CPU) included in
H(1) to prepare the input values X from raw informational
data we denote by the capital letter I (for example, word
embeddings to replace text with numeric vectors or time-
series transformations like first-differences, both discussed
above), and even if the mapping from I to X is trivial or even
non-existent (in the sense that no further processing of raw
I values is needed to form the model-input X values), the use
of H(1) in this way eliminates the input layer totally.

Observe that, in situations where the data rate is not
pushing the model to its processing limit, some optimization
exploits to “save the time it takes to handle a level” are
possible. For example, when H(1) hands off all the data it
has collected from neurons in its level to H(2) (and H(2) then
hands them to its neurons in level 2), H(1) may well have the
processing time necessary to transform the next set of I
values to the corresponding X values, distribute them to the
neurons in Level 1, collect all the neuron outputs, and be
prepared to transmit these to H(2) before H(2) has finished
the prior batch of outputs from Level 1 that serve as the
current inputs H(2) and its neurons are working on. This
saves the time it takes to process a level. This same speed-up
could potentially be used between any level L and level L+1,
for some or all levels.

20

35

40

45

50

14

One notable advantage of CHAMELEON (as shown with
reference to FIG. 2A) is that hub-to-hub communications
can be two-way, either with full-duplex (2-wire connections)
or half-duplex (one wire with some processing consumed to
“turn around” the communications line). Therefore the loop-
ing-back of computational results via data transmissions that
form an essential part of RNNs can be handled simply and
directly (with far fewer wires) by sending data directly from
H(L) to H(LL-1), where L.-1 denotes the previous layer to L.
If the loop-back is only to neurons in the same layer, no
actual loop-back transmission would be needed at all, as the
hub just retains the necessary values. In other words, one
architecture and wiring plan handles both feed-forward and
recurrent neural networks, which is a major advance. Fur-
thermore, even in the cases where hubs H(L) and H(L-1)
have to communicate to fulfill the computations required by
an RNN, the original transmission of data from H(L-1) to
H(L) has been fully completed already in many instances,
allowing the processing of a half-duplex line-turnaround to
not cause any time delay (because the time consumed in the
line-turnaround would be Hub idle time anyway). Architec-
tures are disclosed that allow any Hub to communicate with
any other Hub, not just those that are one level away, which
further accelerates the processing needed in some RNN
models.

Introducing the H-node Hub at each layer dramatically
simplifies and reduces wire counts for layer-to-layer com-
munications by introducing neuron-to-neuron-in-the-same-
layer coordination (through the H-node Hub). The savings in
wires, and therefore both in cost of manufacturing and in
power requirement, are substantial. The following table
illustrates the wire count reduction for an example Feed
Forward (FF) network with 8 inputs, an Input Layer, two
hidden layers, an Output Layer, and a final Action (“Alert”)
Layer that processes the output of the current data-instance
inference; both full- and half-duplex configurations are
shown in the table. A reduction in total node-interconnect
wires from 73 for a traditional Feed Forward Network (see
FIG. 1A PRIOR ART) with one input layer to 37. This 37
can be reduced to 24 if half-duplex connections are used
from Hub-to-neurons (H-node to N-nodes), with some
increase in processing time due to line-turnaround delays. In
some applications this cost vs time trade-off is beneficial.

Elements Count

Input Layer-Data Signal Lines
Hidden Layer 1 Neurons
Hidden Layer 2 Neurons
Output Layer: Decision Points

O N

Alert Module: 1

Total
Wire

Duplex Type

Wire Count Calculation

Count Notes

Traditional
FF NN
(SEE FIG. 1A)
CHAMELEON
FF NN
(SEE FIG. 2A)

Half Duplex
(no turnaround
required)
Full Duplex
(Hub to
Neurons each

Layer)

SBFA) L AT+ @5+ (5 1)

SBED+QFH+ AN+ QD+ A D+Q*H+A*1)

73

37

US 12,353,987 B1

-continued
Total
Alert Module: 1 Wire
Duplex Type Wire Count Calculation Count Notes
CHAMELEON HalfDuplex =@*)+ (1*H+ (1 *D+1*H+1*H+1*5+1*1) 24 Turnaround on
FF NN (Hub to 4+4+5=13
(SEE FIG. 2A) Neurons each connections
Layer) (Hub to
Neuron

connections)

Additional optimization that uses the first H-node is
possible. There, the Hub for the first Hidden Layer is used
to process the input data when it arrives, thereby eliminating
the need for the Input Layer entirely. This reduces the 37 to
29 and the 24 to 16 (a reduction of 8 wires in both cases).
In applications with lower data volumes, this optimization
can be beneficial, since the only cost is not being able to
handle the “next” input set that arrives immediately if the
first Hidden Layer is not done yet handling the previous
input set.

In a further optimization, manufacturers of the SoC can
group the layers (each layer with a Hub H-node and several
N-node neurons) into close-proximity (“neighborhoods™) on
the circuit board to keep hub-to-hub (layer-to-layer), as well
as RNN feedback connections when such connections are
required, as short as possible. Various pre-configured neigh-
borhood layouts can be offered in the manufacturer’s prod-
uct lines.

Note that a key here is the concept of “active” connec-
tions; depending on how the SoC is manufactured, there may
well be wires in a given layer that are not used in a particular
model configuration (more N-nodes in that layer, each
connected to the H-node Hub, than neurons actually used;
such unused neurons will be loaded with zero weights, as
discussed in more detail below). These excess unused neu-
rons might simply be present due to the manufacturer
offering a selection of “standard sizes” of the SoC (per
STAND-UP concept). The excess neurons do no harm and
do not take up any processing time. Furthermore, should the
model change, the SoC is able to be reconfigured without
programming by changing parameters. The previously
unused neurons can be used depending on the parameter
change.

Because hubs now manage all data input/output to neu-
rons, and because Hub nodes can be manufactured with
additional processing capabilities via the inclusion of a
limited-power CPU when compared to neuron nodes (there
are far fewer hubs than neurons, making the expense of extra
processing power quite manageable), the processing of
inputs shown in inputs 301 (as opposed to inputs 101 and
201) can be more robust, since additional computing power
is available, and therefore the weights and biases can be
stored in (one or more) Look-Up Tables (LUTs)—as dia-
grammed—and “pulled” by hubs for retrieval instead of
being individually pushed to neurons, a potentially major
savings in time-to-execute. Hub-to-LUT connections are
explicitly shown in FIG. 3B.

As shown in inputs 301, the communications arrows are
now two-way, illustrating that not only does basic informa-
tion on the neural network structure and parameter values
flow into the device, but information on the network struc-
ture and values can flow back out. (This is true of all further
FIGs, but we do not show the double-headed two-way

40

45

50

55

arrows in further diagrams so as not to confuse the basic
principles being communicated in those FIGs.) Assume that
it is an external central computer, possibly in the cloud,
submitting the model structure and parameter values to our
machine (as discussed earlier). Now the machine itself can
communicate these values, potentially altered as our
machine runs, back to the external central computer. Also,
other values, such as inputs, and other operating values, can
also be communicated back for diagnostic, remediation, and
improvement purposes. But there is an additional use for
two-way communications: the central computer, after
receiving information on structure and values, could actually
run a software simulation of what the hardware is doing, in
fact, an exact simulation if input values are also communi-
cated, or otherwise shared between our machine and the
central computer (perhaps by simultaneous transmission
from the source), thus allowing the central computer to
precisely emulate the hardware and improve it (communi-
cating those improvements to be incorporated as illustrated
below), in real-time or in batch scheduled times (for both the
inputs, the outputs, and the simulations, which can each be
real-time or batch scheduled, in any combination).

With reference to FIG. 3B, inputs 301 and 302 are again
shown, but global shared runtime memory can, as an option,
be installed and used instead of being reliant on hub-to-hub
communications wiring (see FIG. 3A) for at least some of
the hub-to-hub messaging. This approach may utilize addi-
tional runtime memory that is able to be shared by all the
hubs and the hub-to-hub wiring. Additionally, a more pow-
erful CPU may be included to provide additional computing
power to assist in the decision to generate an Alert, and to
process/communicate the Alert if it is in fact generated.
Options of FIG. 3B may increase expenses over those of
FIG. 3A to increase processing speed. Different manufac-
turers may prefer one approach over the other depending on
their cost sensitivity and the performance needs of their
customers.

With reference to FIG. 3C, the node Xst that manages the
collection and forwarding of the system-being-monitored
state variable can be designed with enough computing
power to handle the processing of the inputs 303. Accord-
ingly, FIG. 3C is an alternative to having the first (hidden
layer) hub handle the chores (transformation and conversion
of I values to X values) of the input layer, as illustrated in
FIG. 3B.

With reference to FIG. 3D, hub-neuron (2-way) commu-
nications can also be implemented via a set of shared
registers 304, one shared register for each hub-neuron com-
munication As with hub-to-hub communications described,
use of shared registers can increase manufacturing expense
but can speed up processing.

Parallel computation, both within each neuron (as each
input variable is multiplied by its weight), and across all

US 12,353,987 B1

17

neurons (doing the neuron calculation for all such neurons
connected to a single Hub at once) is shown in FIGS.
4—404, 406, and 407, followed by the summation, adding
of bias, and application of the activation function in series
(not in parallel) for a single neuron but still in parallel across
all neurons 408, 409, 410, and 411. Input data and all
parameters are shown being loaded 402, and 403 indicates
the flow of processing. 401 shows the optional connection to
global shared memory, as explained previously. 411 also
shows how our circuit guards against computer-word over-
flow during the summation process. Note that with parallel
processing no time is lost for multiplying by zero for a
particular variable, so no test for 0-weights needs to be
made; setting some weights to zero, either as a permanent
part of the model, or as a dynamic adjustment to the model
as discussed, is an important and powerful technique to
optimize machine learning model performance by suppress-
ing the influence of inputs that are irrelevant in certain layers
or neurons. 405 illustrates how processing at this neuron,
and similarly at all neurons, can be temporarily disabled in
response to a signal to do so that is part of the HURRI
protocol.

FIG. 5 shows the options for different Hub wiring inter-
connect topologies (hub-to-hub wiring itself being an alter-
native or supplement to hub-to-hub communications via
global shared memory, as discussed above). Point-to-Point
sequential communication (with the option for forwarding
on communications intended for a subsequent Hub if called
for) is shown in 501, Direct all-pairs interconnect (called a
“star”) is shown in 502, a central switch topology (less
sophisticated circuitry than shared global memory) is shown
in 503, and a true message bus is shown in 504. hub-to-hub
communications is an important design variable to adjust for
varying applications, and manufacturers can make a variety
of options available. Note also that FIG. 5 covers commu-
nications from the State Variable Xst to the first Hub, and
communications from the final Hub to the Alert Decision
Layer as part of the hub-to-hub communications topology,
since Xst and the Alert Decision Layer play the same
conceptual role as a Hub.

The timing requirements of hub-to-hub communications
can be taken into account by manufacturers when config-
uring versions of our invention. In the parallel computing
configurations discussed above, observe that in the tradi-
tional all-neurons-in-a-layer fully connected to all-neurons-
in-the-next-layer, FIG. 1 (PRIOR ART), the transition from
one layer to the next can take place in one clock-cycle-per-
bit, while with our Hub topology and wiring, 3 clock-cycles-
per bit are used (neurons-to-Hub in one layer, then hub-to-
hub, then Hub-to-neurons in the next layer). But this is not
a defect of our invention, since we are emphasizing the
optimization of wire count and logic density, which are the
drivers of fabrication cost and power consumption, which
are the real keys to efficiency and practicality, not necessar-
ily eliminating as many picoseconds as possible (which
might not even matter in many applications). Furthermore,
as described herein, shared registers, while costing more,
can dramatically speed up neuron-Hub communications, and
with traditional fully connected (no hubs) topology, the
number of such registers would be prohibitive from a cost
and power standpoint (but not so with our Hub approach),
which means our invention might actually have the time
advantage despite layer-to-layer transition being done in 3
steps. In addition, our signal path is shorter than the tradi-
tional design, due to our Hub topology, and that has positive
implications for transmission speed, power consumption,
and fabrication costs, especially since active components are

10

15

20

25

30

35

40

45

50

55

60

65

18

often needed when interconnects cross-all crossings in an
FPGA are active and that is often true to some degree in an
ASIC, depending on the ASIC design.

An additional point with regards to FIG. 5. Each of the
Hub interconnect topologies shown can be stacked, iterated,
and/or nested with additional copies of itself or other topolo-
gies, thus allowing very complex computational networks,
like a star-of-stars, or a bus of stars, etc. A tree of individual
hubs, a tree of stars, or multiple trees (“forests™) like these
can also be constructed (and one such example is exhibited
later for Decision Trees, FIG. 16).

To amplify the previous point, there are certain types of
machine learning models that are not neural networks, and
have no neurons, but do have layers of decision making
units. Decision Trees and Forests are an example, as just
mentioned. Hubs can have the needed processing capabili-
ties via the inclusion of a limited-power CPU to implement
these models correctly, and thus our invention is applicable
to this type of machine learning as well.

One of our key innovations is to allow, optionally, hubs to
make decisions (via the processing capabilities of an
included limited-power CPU) with regards to next-layer-to-
process routing (not necessarily always automatically rout-
ing to the next sequential layer), thereby implementing
jumps (to later layers in the sequence, when the current state
of data and the model suggest that is advantageous), early
termination of the instance inference (when answers have
been determined sooner than usual), and define-by-run
modifications to processing. This is shown in FIGS. 6: 601
and 602 are the usual components analogous to 101, 102/
201, 202/301, 302, but we introduce 603 to depict logic
circuits (which could be CPUs, potentially very limited and
low-power CPUs) to make the run-time routing decisions in
real-time.

FIG. 7A and FIG. 7B show spare hubs (702 in FIG. 7A
and 704 in FIG. 7B) and helper hubs (703 in FIG. 7B),
important innovations in our invention that are used to
augment the processing of a layer’s main Hub 701 when
necessary due to model updates. As the machine learning
model that is being used for inference evolves and is updated
in response to triggers (from external or on-board training
and/or re-estimation of machine learning models), it might
turn out that a layer needs more neurons or the model needs
more layers, or both. Building in extra neurons in each layer
initially can help but is not a general solution. Instead, our
fabrication can have extra unused hubs, each with some
number of neurons. This allows an unused Hub to be turned
on and become a new layer, but it also allows an unused Hub
to be assigned as a helper (a.k.a. slave or extension) Hub for
an existing Hub, thereby adding more neurons to the existing
Hub.

The helper Hub does nothing but take input from the main
Hub, give it to its neurons in the usual way, collect the
neurons’ outputs, and supply the outputs back to the main
Hub. This exactly implements adding neurons to the main
Hub. Since the main Hub can communicate to the helper
Hub in parallel with its communications to its own neurons,
and the helper Hub can communicate to its neurons in
parallel while the main Hub neurons are working, only at
most two clock ticks (per bit) are added (the helper Hub to
its neurons uses one tick, and the helper Hub sending back
answers to the main Hub uses the other tick)—and perhaps
less time due to possible longer processing times in the main
Hub’s neurons—a small price to pay for the innovative
ability to grow layer “width” (number of neurons in a given
layer) dynamically in real-time even when there are no spare

US 12,353,987 B1

19

neurons left on a layer. Coordination of this reconfiguration
is done, as usual, through the HURRI protocol.

Note that in our invention, helper hubs can themselves
have helper hubs, and that all unused hubs can be in a
common shared pool, to be made into helper hubs (to main
hubs or other helper hubs) or main hubs as needed. Further-
more, after the model is instantiated in response to the input
of parameters (at initial deployment and subsequently), all
unused hubs in the pool can have their power shut off by the
control circuits processing the inputs (FIGS. 3A and 3B) to
further reduce the energy consumption of our invention (and
power turned back on when the unused Hub needs to be
converted to an active (not unused) Hub.

FIG. 8, returning to the theme of FIG. 6, shows how fully
general define-by-run is implemented, and shows the LOAD
Module that is used by HURRI, as well as the shared CPU.
The LOAD Module, 803, halts all current processing, and
updates (one or more) hubs, 802. As in earlier drawings, x01
for Drawing #x, depicts the LUT holding the model inputs,
but here 801 plays an especially significant role, since the
LUT holds the new values that must be loaded. FIG. 9 and
FIG. 10 show the use of fields (often called “receptor fields”
in vision and image recognition applications) to implement
CNNs, both the traditional neuron-only way (FIG. 9), and
our Hub-and-neuron way (FIG. 10), as discussed previously.
Two fields are used for illustration.

In FIG. 9, 901 are the inputs, as in earlier drawings, 902
illustrates the individual fields, 904 is the final convolutional
operation, and 903 is the state feedback. The large number
of wire interconnections is clearly exhibited.

In FIG. 10, using our Hub approach, 1001 are the inputs
from the LUT, 1002 is representatives of the inputs going
separately to each field, 1004 is the final convolution opera-
tion, and 1003 is the state feedback. The greatly reduced
wiring is obvious; the wiring savings per layer is multiplied
by the number of fields, making the use of hubs in CNNs
very attractive.

FIG. 11 illustrates a Hopfield network, showing both the
traditional implementation 1101 (fully connected neurons
with only a single layer—the defining topology of a Hop-
field network) and our Hub invention 1102. Hopfield net-
works are popular and remain a viable alternative to deep
learning networks in certain applications. Hopfield networks
require a memory register at each neuron to remember and
potentially “flip” or “change” the state of the value (usually
bipolar but can be continuous) stored in each neuron;
registers are shown in 1101. In our topology, 1102, we can
use this required per-neuron register to also transfer data
from the Hub to the neurons as well, as we have used in other
topologies discussed above, or we can still use wires for that
transfer, but the dual use of registers is an excellent imple-
mentation choice, leveraging the unique advantages of both
Hopfield networks and our Hub invention. 1102 also illus-
trates the flexibility and malleability of our Hub topology to
adapt to, conform to, and build many types of machine
learning networks-note that our implementation of a Hop-
field network is no different from one Hub of a multi-layer
neural network.

FIG. 12A and FIG. 12B show the HURRI protocol as it
would be used in a single, a segmented, or an ensemble
configuration (FIG. 12A) and then in the following step
(FIG. 12B) how the input sets derived in the first step would
be fed to multiple inference engines as required. In FIG.
12A, 1201, data flows in as usual. At 1202, the inputs are
split into sets if necessary, either disjoint or overlapping sets
depending on the machine learning model (or not split at
all). At 1203, the input values (the “x-values) are trans-

10

15

20

25

30

35

40

45

50

55

60

65

20

formed if the model so requires it: transformation of text into
numeric vectors and then into vector distances is described,
as is using time-series filters to transform the data. At 1204
the data is sent to the hubs as the topology dictates (usually
the first Hub). 1204 continues at the start of FIG. 12B.

FIG. 12B continues at 1205 with the data being fed to
multiple different inference engines when required, as in
implementing ensembles, and the final data fusion step is
1206. FIG. 13 gives details of the processing involved
handling HURRI operations, beyond the LOAD module
shown FIG. 8. The flow of a HURRI update is shown,
starting at 1301 with processing the external signal indicat-
ing new parameters need to be loaded, relaying the notice
implicit in that signal to the hubs (and their included
limited-power CPUs) that processing needs to be halted, and
waiting 1302 for a GO-AHEAD response (which implies
LOAD MODE takes over from RUN MODE as the oper-
ating state, at 1303). The LOAD takes place, 1304, and
notice is returned to the previous step at 1303 which then
issues a RESUME command to transit back to RUN MODE.

FIG. 14 shows 1401 the general type of activation func-
tions used in our system, piecewise linear splines, which are
discussed now. The most common choice for an activation
function is the two-piece-linear RelLU function, and varia-
tions (such as Leaky RelLU and non-linear versions like
GELU, SiLU, ELU), plus smooth functions like sigmoid,
tanh, swish, and others. FIG. 14 shows our novel
approach—an activation function spline approximation
which is general enough to closely approximate the activa-
tion functions (some are piecewise linear but others are
smooth) in use today. Note that smooth activation functions
are used for convenience during model estimation (because
they are differentiable, and derivatives are used in model
fitting optimization), which is not our concern here: during
inference we need only closely approximate the activation
function values of the estimated machine learning model,
and that we can do with a spline.

We call this innovative activation function approach PRE-
LUDE, one of our fundamental invention planks: Piecewise
RELU Dynamic Evaluator). PRELUDE activation functions
can be adjusted to mimic the behavior of common activation
functions but uses only linear splines, taking a cue from the
widespread usefulness of ReLLU, which itself is a two-piece
linear spline (with the first price flat in fact, something we
generalize in PRELUDE).

A PRELUDE activation function (see 1401) consists of 4
connected line segments, a linear spline, from —<pseudo.in-
finity> to +<pseudo.infinity>, where <pseudo.infinity> is a
large numeric value that depends on computer word size (a
value chosen near the max positive and negative value the
word size can accommodate), and is hereafter referred to as
<p.inf>. Its exact value is not important for this discussion.

Since the spline has 4 segments, it has two endpoints and
three interior knots {K1, K2, K3} on the x-axis. The two end
knots are of course —<p.inf> and +<p.inf>. We define the
y-axis value at K1 as V1, the y-axis value at K2 as V2, and
the y-axis value at K3 as V3. The y-axis values at the
endpoints are VO and V4 respectively.

There are therefore 8 activation function parameters: K1,
K2, K3, VO, V1, V2, V3, V4. K1 must be larger than
—<p.inf> and less than +<p.inf>. K3 must be greater-than-
or-equal to K1. K2 must be in the inclusive interval [K1,K3].
V1 and V3 must be less-than-or-equal to +<p.inf>, and V2
must be in the inclusive interval [V1,V3]. These 8 param-
eters are part of the model parameter sets shown in earlier
drawings at the x01 (for Drawing x) step (and in our
invention are stored in the LUT). Via a HURRI operation

US 12,353,987 B1

21

they can be changed at any time; at the initial load, or any
change time, the consistency of the numeric range and
inequality requirements just stated for these 8 parameters
can be checked.

It is assumed that signed or unsigned integers, of bit-
length we denote as B, are used throughout the system
(signed or unsigned as appropriate), including for the 8
activation function parameters, for a value of B chosen by
the manufacturer (B=8 is a common choice). The manufac-
turer can also design some of the circuit components to use
a maximum number of bits less than B, call it b, potentially
with different values of b in different parts of the circuit.
Note further that quantization/distillation scaling to the
allowed maximum number of bits, and to the value range
dictated by the choice of signed or unsigned integers, as well
as rounding small values to zero (only necessary when
multiplication operations are done in serial, since a parallel
multiply by any value adds no additional time to the com-
putation) can be done during parameter input, as depicted in
FIG. 3A, and also during the input ingestion, since inputs
need to be integer values as well as, such processing
depicted in FIGS. 3A and 3C. Furthermore, during that
processing, to avoid re-scaling when future values (for
inputs, or for parameters that are not bounded by -1 and 1,
as weights are, but other parameters might not be) arrive, a
conservative estimate of the maximum possible value that
will be seen in the future must be made (and any future
values exceeding this estimated maximum are set to the
estimated maximum), and likewise for minimums. This is a
common statistical practice known as Extreme Value
Theory, and estimators like Hill’s estimator are easy to
compute on scaled integer values after an initial scaling, then
used to adjust the final scaling.

More detailed examples and explanations of actual cir-
cuits and processing are presented in the three drawings FIG.
15A, 15B, 15C showing respectively (15A) the circuit
diagram of a neuron making its “weights multiplied by
inputs then summed” calculation (often referred to as Mul-
tiply-Accumulate or MAC), (15B) a Logic Diagram of a
Hub of neurons where processing across neurons is parallel
but each individual neuron is serial, and (15C) a detailed
flowchart of Hub processing for a HURRI parameter update
operation. These drawings are for explanatory and exposi-
tory purposes.

In FIG. 15A, we use as an example an inference instance
of a system with 4 input variables, X1 through X4 (in
previous examples we had 8 input variables, X1 thru X8, but
we exhibit a smaller problem now for ease of exposition). At
each neuron therefore there are four weights, W1 through
W4, that are each being used to multiply the corresponding
X’s. These values, the X’s and W’s, have to be loaded into
the neuron circuitry, either by a wire feed or retrieval from
a shared register, which is what we choose for this diagram.
Data enters at 1501 and ends at 1502. 1502, 1504, and 1505
show the details of the gates used to perform the arithmetic,
and the final summation of the (Wi multiplied by Xi)
products is done in the circuitry at 1506, with an exit of the
process at 1507. Note that for illustration we are using 4-bit
unsigned integer precisions here. Note also that at 1505 we
test for a zero multiplier and skip any multiplication involv-

10

15

20

30

35

40

45

50

55

22

ing it (this circuit would typically be used when the neuron
processing is sequential rather than parallel, since, when
processing in parallel, a useless multiply-by-zero wastes no
time as it takes the same time as the other multiplication
operations taking place simultaneously; note further that
suppression of a large number of multiplies-by-zero in
parallel mode might however save power consumption, and
logic can be developed to make that decision, balancing the
savings against the power consumption of the zero-test and
extra circuitry, the question turning on the expected number
of zero multipliers).

In FIG. 15B, by contrast with the earlier FIG. 5, we are
showing the workings of the Hub (HUB 2 in this case)
handling 8 inputs for each of its 4 neurons in parallel, but the
processing within each neuron is serial, 1501 being the data
entry as before, with processing at 1502, 1503, and 1504. A
shift to avoid overflow is also illustrated.

FIG. 15C is a flow chart that adds detail to the processing
of'updates to a Hub’s parameters, a HURRI operation, in this
case triggered by a signal from an on-board processor 1508.
In previous diagrams this detail was collapsed under the
term LOAD.

FIG. 16 shows how a decision tree inference engine
would be implemented in our Hub architecture. As dis-
cussed, many additional types of machine learning inference
engines can be configured from our Hub-and-neurons, or
hubs-alone, topology, especially when the hubs are instan-
tiated with processors (typically low power processors). We
use a Decision Tree as an example. FIG. 16, 1601 shows
processing beginning at the first Hub, which is considered a
Hub for a “level” as opposed to a “layer” as in neural
networks. Processing starts at Level 1, then proceeds
“down” through (in this example) 4 more levels, Levels 2,
3,4, and 5. Levels 2, 3, and 4 (more generally all levels but
the final decision level) have a number of hubs that is a
multiple of the number of hubs in the immediately preceding
level, a consequence of the tree structure. The final decision
level has a Hub corresponding to every possible final
prediction or alert action of the model.

For a given input data set, the inference execution path
follows only a single route from top to bottom of the tree
(“root to leaf”), thus only one Hub at each level is invoked.
This is a perfect fit for our Hub architecture, since non-active
hubs for a given inference data instance consume no
resources whatsoever, and routing to the correct Hub in the
next level is a straightforward choice of wire based on
simple numeric comparisons. In fact, in problems with a
moderate number of inputs (this number depends on the
wiring and LUT memory decisions made by the manufac-
turer), the Hub comparisons at each level (comparisons take
place in all but the final level) can be made in parallel, so that
all Hub decisions are made at once, and the final decision is
arrived at in one operation. Furthermore, it is possible to
compute the comparison decisions in advance for certain
ranges of inputs, and store the answers in LUT memory,
making the decision calculation even faster.

Summary of Our Six Key Innovations or Concept Planks

Key planks of the disclosure include CHAMELEON,
HURRI, MINUET, PRELUDE, RAIL, and STAND-UP,
which are summarized in the table below.

Plank Name Name Expansion

Use

CHAMELEON Chip Hierarchical Architecture MachinE
Learning Engine Optimizing Nodes

Fundamental Hub-and-Spoke architecture
(spokes are neurons)

US 12,353,987 B1

23 24
-continued

Plank Name Name Expansion Use

HURRI Halt/Update Reload/Resume Interface Managed communications protocol for
downloading and installing new model
parameters

MINUET Multiple INference Unified Edge Configuring multiple machine learning models

Training (post training or re-training) to update multiple

inference execution engines

PRELUDE Piecewise RELU Dynamic Evaluator A parameterized approach to defining a flexible
family of linear splines to closely approximate
standard activation functions

RAIL Reduced Arithmetic Instruction Logic Enforcing quantization of input values and parameters
when the trained model was not distilled; limiting
arithmetical and logical operations needed

STAND-UP Sized Topology Architecture for New Designing a product line of ASICs or FPGAs stratified

Data and Update Processing

by size (max number of layers and neurons) to allow

engineers choices for cost and power needs

Below are additional technical details to help explain the
intricacies of our invention, plus details on RAIL which has
not been discussed previously, and a reiteration of some
points made previously with additional exposition to better
communicate some important principles.

We have discussed above the key role of the HURRI
protocol in carefully managing the updating of model data
and model structure, an extremely important and innovative
aspect of our invention. We have not explained the message
structure that is used in HURRI updates; we do so now:

The HURRI Protocol Message Notation uses the same
H() N() W() [and B() for bias values and A() for activation
function parameters]| notation used elsewhere in this disclo-
sure, but now in a normative sense, not a descriptive sense.
In other words, a full set of H() N() W() B() and A() values
fully defines the architecture (structure and layer order) of
Feed Forward neural networks, with the addition of H()
pairs that need to communicate backwards, for an RNN, or
with the addition of field numbers for CNNs and other
multi-engine topologies (like ensembles). Furthermore,
additional pairs of H() values that may not be sequential but
nonetheless need to communicate (and thereby launch pro-
cessing on a particular Hub) are used to define more
advanced on-the-fly computational order changes (skipping
layers, early termination, helper hubs, etc.)—actual execu-
tion of such logic would be done by (limited compute
power) processors in the hubs at run-time, but the use of
HURRI to define and change the network structure is what
allows this to be accomplished.

In HURRI, neural network structure is defined implicitly.
There is no need to specity, for example, that Hub 4 has 5
neurons, nor that there are 6 total hubs. The presence of H(4)
in a HURRI message, along with the presence of N(4,1),
N(4,2), N(4,3), N(4,4), and N(4,5)—but no other N(4,x)—
takes care of the “Hub 4 has 5 neurons” specification, and
the presence of H(1) through H(6) but no H(7) takes care of
the “6 total hubs™ specification.

An extension “modifier” to the H() notation (details
below) allows for the definition of “Helper hubs™ as previ-
ously discussed.

Specification of the H() N() W() B() and A() values can
be in any order. A complete set of such values is used to
define the network initially, and then any consistent subset
of values can be used at any time later to change or extend
the architecture, as well as update values. A minus sign, as
in —=H(6), is used to signify the elimination of a component
(when a Hub is eliminated, so are all of its neurons, and any
interconnections between the eliminated Hub and other
hubs, plus the elimination of any helper hubs connected to

35

40

45

55

the eliminated Hub). Of course elimination means simply
that no processing takes place using these components;
obviously no wires are removed (and in fact the wires now
not being used can in some cases be re-assigned if and when
new parts of the network structure are instantiated).

Note that the HURRI processor, which is, in essence, a
layout engine, can use simple integer parsing and evaluation
to check the sanity and limits of the implied implementation
(the hardware might not support 500 layers, for example),
and to find and report erroneous or illogical specifications—
for example, instantiating a neuron N(6,1) when there is no
H(6). Note however that Hub numbers, and neuron numbers
on neurons attached to a Hub, do not need to be sequential—
skips are allowed, as they may result from the elimination of
particular hubs and neurons (there is no need to renumber or
“pack” the numbers sequentially, since hub-to-hub routing is
controlled by the topology, not the assigned numbers, and
Hub-to-neuron communications already skips unused neu-
rons that might have zero weights).

The HURRI Protocol commences by sending the desired
(new or updated) neural network configuration as a struc-
tured message string consisting of individual tokens, fol-
lowing the notation explained below. The tokens may be
sent in any order, there is no need to sequence, and all tokens
presented represent new or updated elements or values, or
deletions—all prior elements remain as is (unless explicitly
deleted with a minus-sign token), and all values remain at
their current levels until changed (there is no need to delete
values, rather HURRI deletes the element they apply to, or
for inputs, simply does not include that input number in any
further inferences). This approach is known as “cascading”.
Hub Notation

The letter H then in parentheses:

Hub Number (its Layer) and its field (receptor field in a

CNN), separated by a comma.

If a Helper Hub, Helper Number after a dash following

the letter H but before the parentheses.

Examples

H(2)—A single Hub in Layer 2 in a simple feed-forward
NN or RNN.
H(2,1)—The Layer 2 Hub in the first receptor field of a
CNN(or the first inference engine in an ensemble).
H-1 (3)—The first Helper Hub for the main Hub in Layer
3.

H-2 (3,4)—The second Helper Hub for the Layer 3 main
Hub in field 4 of a CNN(or the fourth inference engine
in an ensemble).

US 12,353,987 B1

25

(Note: ensembles of CNNs are not typically used, but
if desired would require an extension to the H()
notation, not discussed here for brevity.)

Neuron Notation
The letter N, then in parenthesis (as with helper hubs, the
helper number of the associated Hub goes after a dash
following the N, but before the parentheses).
The ordered pair (Hub Number, Neuron Number), or the
ordered triplet (Hub Number, Field Number, Neuron
Number).

Examples

N(3,2)—The second neuron of the single Hub in Layer 3,

N-1(4,3)—The third neuron in the first Helper Hub of the
main Hub in Layer 4.

N(3,2,5)—The fifth neuron of the main Hub in Level 3 of
Field 2 (of a CNN, or 2"? inference engine in an
ensemble).

Weights Notation

The letter W, then an ordered triplet or an ordered 4-tuple,
the initial two or three elements constructed exactly
like the neuron N() notation, with the Input Value
Number added last (thereby specifying how this weight
is used).

Examples

W(4,2,3)—The weight used for input 3 in the second
neuron of the single Hub in Layer 4.

W-1(4,3,1)—The weight used for input 1 in the third
neuron in in the first Helper Hub of a single Hub in
Layer 4.

Biases Notation

The letter B, then proceed exactly like neuron N()

notation, since there is just one Bias value per Neuron.

Examples

B(3,2)—The bias used for the second neuron of the single
Hub in Layer 3.
B-1(4,3)—The bias used for the third neuron in the first
Helper Hub of a single Hub in Layer 4.
Activation Function Parameters Notation
The letter A, then continuing exactly like the weights W(
) notation, except there must always be exactly 8 values
(in place of the weights), since the activation function
spline is defined by 8 parameters.
Specitying Values in this Notation
Following W() B() and A() tokens there is always an
equal sign followed by the actual value, scaled accord-
ing to the rules discussed elsewhere in this disclosure.

Example

W(4,2,3)=39

There are some minor but vital additions to the notation

system described so far:

In the H() notation, H' indicates an initial Hub that has a
(limited compute power) processor to handle the input
layer, so there will be no input layer constructed; in
most practical situations an H'(1) will in fact be used.
The ‘character does not need to be repeated to substan-
tiate a Helper Hub for a Hub that handles input, the
following is fine (if a’ is specified on a Helper Hub it
is ignored): H'(1) H-1(1)

10

15

20

25

30

35

40

45

50

55

60

65

26
In the H() notation, H" indicated a final layer that has a
(limited compute power) processor to handle alerts and
similar post-inference issues (communicating predicted
state back to the input, etc.).

As noted above, other hubs can have (may require)
low-compute-power-processors to make routing deci-
sions. Manufacturers may offer different types of such
processors depending on their capabilities, and we use
superscripts in square-brackets to indicate the type of
processor (with 1 being the lowest power) to instantiate
with a Hub (the exact choice of processors is up to the
manufacturer; the range of processors offered in vari-
ous numbers and configurations is part of the STAND-
UP advance).

For example:

H™(2) specifies a processor of Type 1 (lowest power) for
Hub 2

H™(3) specifies a processor of Type 4 (higher power) for
Hub 3

For engines featuring hubs with (typically low compute
power) processors that make dynamic decisions on routing
to implement define-by-run and similar strategies, the O()
notation is used to capture the outputs from a neuron (as
transmitted to the neuron’s Hub). O() has the exact same
syntax as N(). Note that other instructions for the processors
will depend on the processor type chosen and such matters
are not discussed herein.

As part of the HURRI protocol, the Hub topology needed,
as well as the routing/sequencing order of Hub processing,
has to be specified, and potentially changed adaptively over
time. The basic specification is a selection from one of four
keywords:

BUS DIRECT STAR SWITCH (See FIG. 5)

If this keyword is left unmodified, it applies to all fields
(for CNNs) and sub-models (for ensembles). To limit the
scope of the keyword, append “: M” to the keyword, where
M is the field or ensemble-member number. The result of
multiple specifications is cumulative (also known as “cas-
cading”), so:

DIRECT
STAR: 3

links all hubs in a sequential direct pipeline except for
sub-model 3, which will use a Star topology. If the main
inference engine model or sub-model does not use
general hub-to-hub communications (for example,
there is only a single Hub, as in a Hopfield network, or
the hubs are arranged and traversed in a fixed order, like
a decision tree), the keyword NONE can be specified.
Example:

STAR
NONE: 2

This specification instantiates a STAR topology for all
inference engines except #2 (which might be a Decision
Tree). The DIRECT keyword can take an ordering of the
hubs, which would typically (but not necessarily) be sequen-
tial; this ordering is optional, and sequential is assumed. If
no ordering is given, DIRECT applies to all hubs not
otherwise referenced.

Note that any Hub that is in the DIRECT sequence, either
explicitly or implicitly, that has been removed, is success-
fully skipped over by the hardware.

US 12,353,987 B1

27

Example

DIRECT

-H(3)
will work, there is no need to specify DIRECT(1,2.,4,5)
assuming that the 5 hubs 1,2,3,4,5 are the only hubs in the
network, since as mentioned above, DIRECT without a Hub
list implies “all hubs not otherwise referenced”.

The Hub ordering sequence specified in the DIRECT
statement can be more complex than a simple list of Hub
(layer) numbers. Pairs of hubs that must communicate are
specified with a: between them, as in 1:4, and this direct wire
link is instantiated in the SoC.

Hub topologies can be stacked, in other words, con-
structed from smaller subset topologies combined together,
as in a STAR of STARs, or a DIRECT pipeline of STARs.
Stacked (combined) Hub topologies are notated HH for
Hyperhubs, and are (must be) defined explicitly with an
HH=statement, as in this example:

HH(1)=STAR(1,2,3,4)

HH(2)=STAR(5,6,7,8)

DIRECT(HH(1), HH(2))

The example above creates two STARs of hubs, the two
stars connected by a direct link (wire). Here is an example
specification for a STAR of four STARs, the first two having
4 hubs and the second two having 3:

HH(1)=STAR(1,2,3,4)

HH(2)=STAR(5,6,7,8)

HH(3)=STAR(9,10,11)

HH(4)=STAR(12,13,14)

STAR(HH(1), HH(2), HH(3), HH(4)

As just illustrated, all keywords, not just DIRECT, can
take a Hub list in parentheses (but this list only represents
Hub processing order in the DIRECT case). And further-
more, HH() can be used in this list wherever H can be used.

The HyperHub construction can be iterated, creating
successively larger collections of hubs. Continuing the pre-
vious example, here is a successive stacking:

HH(5)=STAR(HH(1), HH(2), HH(3), HH(4))

HH(6)=-DIRECT(15,16,17,18)

HH(7)=DIRECT(HH(5), HH(6))

Which instantiates a topology where the STAR HH(5)
(which cross-connects all combinations of the stars HH(1)
[hubs 1, 2, 3, 4], HH(2) [hubs 5, 6, 7, 8], HH(3) [hubs 9, 10,
11] and HH(4) [hubs 12, 13, 14)) is itself connected via a
single link (wire) to hubs 15, 16, 17, and 18 in sequence.

The notation is forgiving: spaces and multiple lists are
allowed. Therefore, the following is legal and compresses
the last three statements into two (with one less HyperHub
definition needed):

HH(5)=STAR(HH(1), HH(2), HH(3), HH(4))

HH(6)=-DIRECT(HH(5), 15, 16, 17, 18)

There is a further extension to the Hub list construct
allowed in DIRECT() and the other keywords: two Hub
numbers with 3-dot ellipses in the middle, as in
DIRECT(1 . . . 6), which is equivalent to DIRECT(1,2,3.4,
5,6). And since multiple lists are allowed, the following is
legal and useful:

DIRECT(1 . . . 4, 4:5, 4:6, 4:7)

This builds a direct wire link sequentially connecting hubs
1, 2, 3, and 4, and then three single-wire direct links from 4
to 5. 4 to 6. And 4 to 7. Note that without further specifi-
cations the hubs 5, 6, and 7 cannot communicate with each
other, which might in fact be the exact correct instantiation
of this tree-type topology.

Note that the specifications (using hubs 4 and 5 as an
example) STAR(4,5), STAR(4:5), and STAR(4 . . . 5) are

10

15

20

25

30

35

40

45

50

55

60

65

28

equivalent to each other and equivalent as well to each of
DIRECT(4,5), DIRECT(4:5), and DIRECT(4 . . . 5)—which
are also equivalent to each other-so is unlikely to be used in
practice. Furthermore, specifying solely just a single pair of
hubs (via any of the three ways of writing a pair just
illustrated) in BUS or SWITCH (or including the: notation
specifying a direct link even if other Hub numbers are
included in a BUS or SWITCH) wastes hardware by forcing
the instantiation of intermediate circuitry to connect just two
hubs, and should be avoided in practice.

If there is an ambiguity regarding how hubs are con-
nected, because of multiple specifications for the same Hub
explicitly or implicitly, as in the following two examples:

Example 1

DIRECT(4 . . . 10)
STAR(5,6.7)

Example 2 (Applying to all Hubs Implicitly)

DIRECT

STAR

Then the instantiation process follows the given contra-
dictory directives in the precedence order:

DIRECT, STAR, BUS, SWITCH

It is clear that HURRI provides a full specification for
defining and instantiating a neural network (and other
machine learning models like decision trees), as well as
updating and changing them.

We continue now with additional comments to aid in
understanding our invention, then concluding with a
description of RAIL.

Note that the initial state value, Xst, and periodic changes
to it, of the real-world system being monitored by the
inference engine, can be a hard-wired input or a telecom-
munications input from an external device, or even entered
manually.

Every time the latest Xst value was not predicted correctly
by the inference engine, the values (predicted and actual)
can be stored (in the engine’s LUT or other memory), and
then re-training can happen-even at random intervals—and
this can be accomplished on a CPU in non-real time, the
CPU being in the SoC, on a circuit board connected to the
SoC, or fully remote.

We have already noted that an enhancement to the stan-
dard Feed Forward processing order (each layer feeds the
next) is made possible by our Hub architecture: if a condi-
tion (computed at the Hub via its associated processor,
typically a low-computing-power CPU) is met, just termi-
nate the Feed-Forward and pass the current answer (predic-
tion) on to the final node (using the hub-to-hub communi-
cations topology). But there is a third alternative: keep going
as per Feed Forward processing, but carry along (as a side
channel) the just-completed layer’s final answer so that it
can be used in an ensemble-like data fusion at the end. We
term this a 3-way option: CONTINUE/JUMP (to end)/
RELAY (value).

Hub arrangements can be arbitrary and complex, allowing
the construction of inference engines for more esoteric
machine learning models beyond Feed Forward, RNN,
CNN, and Decision Trees.

If our inference engine SoC is being used to monitor and
predict state-changes for a real-world system, additional
circuitry can be added to specifically keep history of state-
changes, compute historically-observed state transition
probabilities, and then use these values as additional input

US 12,353,987 B1

29

data for the machine learning model. The SoC circuit board
can also include (not only additional processors) but state-
change-machinery.
A Note on FPGAs

FPGAs have become a popular choice for machine learn-
ing computing “at the edge”, because of their ability to have
their programming modified in-the-field (as their name
implies) in near-real-time. But FPGAs can be expensive
when a large number of gate interconnection wires are
required, and large numbers of interconnections are the
hallmark of neural networks. Additionally, a lot of effort
goes into updating the machine learning model on the FPGA
periodically and frequently, since model evolution (remotely
on large model estimation hardware) is the norm, due to the
fact that machine learning models improve, often dramati-
cally, as they are further trained (re-estimated) when new
training data becomes available, as it often does in large
volumes. Current engineering state-of-the-art is centered on
the belief that this constant updating requires an FPGA, but
our invention allows this updating to take place without
reprogramming, opening the door to much-less-expensive
ASIC architecture. Note however that our invention sup-
ports not only implementation in an ASIC, but implemen-
tation on a non-field-programmable (program once) FPGA
which can be manufactured by current FPGA producers in
the industry without tool-and-die changes; this might be an
attractive alternative for convenience (not having to fabri-
cate an ASIC), at a price point lower than current FPGAs due
to the fact that field programming does not need to be
supported.

In current state-of-the-art engineering, much effort is
expended on distillation (reduction) of machine learning
model complexity to allow the model to run on limited
“edge” hardware. By focusing on inference engines only, but
allowing them to be modifiable without re-programming, we
eliminate much of the need for distillation, using only
quantization (converting floating point values into limited-
range signed integers, a common practice).

We have discussed facet-masking above. Note now that
facet-masking also allows deployment of (multiple, in an
ensemble) smaller models (fewer input variables) that are
data-fused at the end if necessary, preserving all the explana-
tory power of the full-sized model. This design allows a new
type of distillation with no loss (and possibly a gain due to
less noise in the data) of accuracy, and no speed penalty
since all members of the ensemble can execute in parallel.

We need to stress that our inference engine can support
machine learning models that mix all types of data as inputs:
numeric, categorical (labels, multinomial data, or ordinal
data), text segments (log file messages, customer comments,
911 calls), spatial data, digitized images, audio, and video.

We have discussed above the tradeoff between simplex
wiring (one wire, half-duplex communications with line-
turnaround needed if and when the direction of data flow has
to be reversed) and duplex wiring (two wires, full-duplex
communications with data flowing in both directions, no
line-turnaround needed). This tradeoff can be made to opti-
mize wiring costs, or alternatively to minimize run time, or
a compromise between these extremes. Similarly, nodes
(hubs or neurons) that need frequent inter-connection com-
munications can be grouped close together in the ASIC or
FPGA layout, building “neighborhoods” of nodes. Commu-
nications within a neighborhood—call it a data lane—will
require simpler wiring, while communications between
neighborhoods—call it a data highway—will use more
robust wiring. As with count limits on hubs and neurons,

10

15

20

25

30

35

40

45

50

55

60

30

these wiring decisions can be made at manufacturing time,
and different versions offered to application designers, at
different price points.

We have mentioned above that one current engineering
approach (which we do not recommend) builds hardware for
inference with a single layer only, that layer having the
maximum number of neurons that appear in any layer. Then
as each layer is processed in turn, that single layer is
re-configured on the fly and used. We want to clearly explain
the following: the two main disadvantages to that approach,
while it does cut down on wiring (although not as much as
using hubs), is that data values (weights, biases, activation
function parameters) have to be loaded every time the “next”
layer is invoked and processing is done in strict “no overlap”
sequential serial order, while with true multiple layers,
sequential processing can still be achieved but overall time-
to-finish substantially reduced by our staged pipeline
approach-when level L finishes, as soon as it communicates
its answers to level L+1, it grabs the answer from level [.-1
and starts processing. So all levels are working in parallel
eventually, each one on a different stage of processing (the
first layer moves on to the next input data set, which
typically in high-volume data rate applications has already
arrived and is queued for processing).

RAIL: Reduced Arithmetic Instruction Logic

RAIL is a specific set of quantization rules for data along
with minimization of the basic arithmetic and logical opera-
tions that the underlying hardware of our SoC has to support.
It is optional, but can lead to very economical fabrication
costs. As part of RAIL, we also recommend memory sizes
and storage strategies.

We have noted before that input data (and hence weights,
and activation function parameters) need only (can be dis-
tilled/quantized down to) B-bit SIGNED INTS, so that is all
that is needed as well for the results of arithmetic operations
(typically done at twice-B precision and then scaled down
(shifted) to fit in B bits as needed). For the common choice
of 8-bits, this means all our numbers are scaled from -127
to +127, approximately rounding to the nearest 0.01 which
is perfectly sufficient for most real-world industrial numeric
measurements (with appropriate scaling).

This also fits well for the common convention of using
8-bit bytes for characters (textual data). A further quantiza-
tion is possible with text: packing all words in the text into
at most a 64 bit structure (keeping the first 8 chars of every
actual word, ignoring the rest of the characters)

One exception is ip-addresses, where the full length data
value must be retained. Therefore these addresses are con-
verted on-the-fly to 32 bit (4 bytes) unsigned ints for ipv4 or
128 bits (16 bytes) for ipv6. Standard arithmetic operation
can do this parsing.

A second exception is for memory addresses, where
typically 64-bit (8 byte) unsigned ints are used.

To summarize, data lengths are 1 byte for numeric, 4 bytes
for ipv4 addresses, 8 bytes for text words and memory
addresses, 16 bytes for ipv6 addresses, to (optionally)
deploy for optimizing the hardware resources on our SoC.

We refer to each of these data-storage byte lengths as
DS-1, DS-4, DS-8, and DS-16 data stores (those are the
widths; it might be convenient in deployment to make each
data array 4 gigabytes deep, and we assume that here).
Therefore we have for storage calculations:

DS-1=4 GB

DS-4=16 GB

DS-8=32 GB

DS-16=64 GB

US 12,353,987 B1

31

All of these storage requirements represent commodity
of-the-shelf inexpensive hardware memory modules. The
number of each DS types we need depends on the number
and element-types of the data facets of the problem at hand.
We recommend treating each of the DS stores as a circular
buffer. In this way there are current pointers available, such
pointers pointing to the observed data values corresponding
to the present time, and it is straight-forward to assemble any
set of historical data over time (within the extent of our
storage). While the history in actuality grows over time
infinitely, RAIL suggests keeping the latest 4 gig (~4 Bil-
lion) of the latest values, which should be sufficient for
machine learning updates developed locally. In processing
text data, we also need vector embeddings. RAIL suggests
the use of limited-domain static embeddings on a pre-
defined dictionary appropriate for the subject domain. These
do not grow significantly over time. Typically, specific
domains in general have no more than about 30,000 words
that matter, but to be safe RAIL recommends making the
limit 64k, which allows 16-bit addressing. Each vector starts
as 300 or 768 floating point numbers in the range (-1,1), but
we round down to ints from —127 to +127 (which we take
as meaning the rounded-down value multiplied by 128), and
we dimension-reduce (by standard algorithms) the 300 or
768 dimensions to 256 dimensions, giving us excellent
economic and fast operations: 64k entries, each 256 bytes,
which is a trivial 16 MB array. We need a good (minimal
collision) hash function for every term so that we can rapidly
compute text-segment vectors with the above embeddings,
therefore it is prudent to leave space and only do about
50,000 words at most, fine for the typical subject-matter
domains. Furthermore, the SoC can easily accommodate
more than one embedding table if needed (for multi-lan-
guage applications, for instance, or data that combines facets
from more than one domain, like medical and food). Each
table is only 16 MB.

The storage of time values can lead to additional consid-
erations, but scaling and rounding can solve those. For
example, for consumer data, daypart indicators (in each time
zone) like {morning, workday, after-school, dinnertime,
evening, night} might be more useful than HH: MM values.
Similarly, calendars based on half-years instead of full-years
might be useful (half-years have fewer than 256 days, while
full-years do not).

With these data representations in mind, RAIL allows a
small set of basic arithmetic and logical operations, as
follows (note—this reduction step might not be necessary if
the hardware manufacturer uses processing chips that
already have larger sets of arithmetic and logical operations
built in):

CREATE ZERO.

CREATE POSITIVE and NEGATIVE MAXIMA

ADD

SUBTRACT

INTEGER MULTIPLY

TEST {negative, zero, positive} (used with SUBTRACT

for COMPARE)
Example use:
ABSOLUTE VALUE=TEST then COMPARE and
FLIP SIGN if needed
FLIP SIGN=if TEST POS then SUBTRACT TWICE
If TEST NEG THEN SUBTRACT FROM 0
SHIFT
Example use:
ROUND (to power of 2)=SHIFT and then SHIFT
BACK SCALE=MIN and MAX of ROUND val-
ues

10

15

20

25

30

35

40

45

50

55

60

65

32

XOR

Example use:

Extract 8-bit bytes using bit masks of all ones (which
themselves can be created by shifting MAXIMAL
values left and then back right as needed.

Program control is needed to get three more arithmetic
values:

LOOP (actually built from the primitive JUMP: incre-

ment, compare, jump)

Example use:

SUM=LOOQOP over ADD
MINIMAX=LOOP OVER COMPARE

Aspects of the present invention are described herein with
reference to block diagrams of methods, computer systems,
and computing devices according to embodiments of the
invention. It will be understood that each block and com-
binations of blocks in the diagrams can be implemented by
computer readable program instructions and/or hardware
circuits.

The block diagrams in the Figures illustrate the architec-
ture, functionality, and operation of possible implementa-
tions of computer systems, methods, and computing devices
according to various embodiments of the present invention.
In this regard, each block in the block diagrams may
represent a hardware or software module, a segment, or a
portion of executable instructions for implementing the
specified logical function(s). In some alternative implemen-
tations, the functions noted in the blocks may occur out of
the order noted in the Figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block and combi-
nations of blocks can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hard-
ware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Although this invention has been described with a certain
degree of particularity. it is to be understood that the present
disclosure has been made only by way of illustration and that
numerous changes in the details of construction and arrange-
ment of parts may be resorted to without departing from the
spirit and the scope of the invention.

What is claimed is:

1. A digital circuit implementing a machine learning
model inference engine for one or more models, wherein the
machine learning model inference engine takes, as inputs, a
set of measurements of an external system as delivered to the
digital circuit by the external system, and produces, as an
output, a final answer prediction of one-or-more attribute of
the external system based on the inputs by applying one-
or-more machine learning neural networks, the digital cir-
cuit comprising:

a hub-and-spoke data transfer architecture for each of the

one or more models,

US 12,353,987 B1

33

wherein each of the one or more model comprises a
neural network having an input layer, a fixed number
of intermediate layers, an output layer, and option-
ally an alert layer,

wherein the input layer, the fixed number of interme-
diate layers, the output layer, and the optional alert
layer are processed sequentially, wherein processing
occurs at

each layer by a plurality of neurons, said plurality of
neurons comprising a first neuron set, a second
neuron set, and zero, one, or more than one addi-
tional neuron sets for any remaining layers; and

a plurality of hub nodes comprising a first hub node, a

second hub node, and zero, one, or more than one

additional hub nodes for any remaining layers,

wherein the first neuron set is not directly connected to
any neurons in the second neuron set and is further
not directly connected to any neurons in the third
neuron set,

wherein the neurons in the first neuron set are only
connected to the first hub node,

wherein the neurons in the second neuron set are only
connected to the second hub node,

wherein the neurons in the third neuron set are only
connected to the third hub node;

wherein all data transfers between and among each of the

first layer, second layer, and third layer take place
hub-to-hub, such that the data transfers between the
first layer and the second layer occur between the first
hub node and the second hub node, and the data
transfers between the second layer and the third layer
occur between the second hub node and the third hub
node,

wherein the first hub provides the first set of neurons with

data needed by the first set of neurons to perform

respective computations within the neural network,

wherein the second hub node provides the second set of
neurons with data needed by the second set of neurons
to perform respective computations within the neural
network,

wherein the third hub node provides the third set of

neurons with data needed by the third set of neurons to

perform respective computations within the neural net-
work, and

wherein the respective computations optionally proceed

sequentially to any remaining layers, in excess the third

layer, to a final layer of the model.

2. The digital circuit of claim 1, wherein the neural
network inference engine is an inference engine that can
perform inference for one or more of the following: feed-
forward neural networks, recurrent neural networks, convo-
Iutional neural networks, Hopfield neural networks, Adap-
tive Resonance Theory neural networks, Kolmogorov-
Arnold neural networks, more complex neural networks that
combine elements from each of these neural network types,
decision trees where each level of the decision tree is treated
as a neural network layer and the decision boxes at each
level treated like a neuron.

3. The digital circuit of claim 2, wherein the wire inter-
connections of hubs and neurons are used to implement
additional neural network types, where the weights-and-bias
computation circuits, the layer-to-layer sequence routing
circuits, the input quantization and transformation circuits,
and the alert generation circuits are sufficient to do the
computations required by these additional models.

4. The digital circuit of claim 1, wherein communications
between the plurality of hub nodes and the neurons are

15

20

25

35

40

45

50

55

34

selectively configured for half-duplex and for full-duplex
communications depending on design considerations
involving cost and inference execution time.

5. The digital circuit of claim 1, wherein each of the
neurons conveys results of the respective computations back
to a respective one of the plurality of hub nodes, wherein
neuron processing for each of the plurality of hub nodes is
configurable as being either serial or parallel.

6. The digital circuit of claim 1, wherein the respective
computations are each a summation of pre-defined weights
multiplied by input-data for each input-data value.

7. The digital circuit of claim 6, wherein a predefined bias
is added and then an activation function is applied subse-
quent to the summation of pre-defined weights.

8. The digital circuit of claim 1, wherein each hub is
configured to selectively skip the respective computations
involving a multiplication by zero when a processing of
weights and data is wired to be serial, wherein no skipping
of the respective computations occurs when a processing of
weights and data is wired to be parallel.

9. The digital circuit of claim 1, wherein hub-neuron
communications channels are conducted via shared access to
a shared register, instead of point-to-point wiring.

10. The digital circuit of claim 1, wherein hub-to-hub
communications are conducted via shared global runtime
memory instead of or in addition to (in any combination)
hub-to-hub wiring of any type, including but not limited to
(a) point-to-point with forwarding of communications to
other hubs that an in the layers with higher layer numbers
than the hub initiating communications, (b) a separate bus
directly wired as part of the digital circuit or using over-
the-top wiring on an additional component in the digital
circuit, (¢) via a star interconnect topology where each hub
is directly connected to every other hub, or (d) a switched
system with a digital circuit component in the center to
which every hub is connected, including a configuration
where:

one of the hubs has a processor added to it that lets it be

the digital circuit component in the center, and
where routing instructions and specification of the hub in
the layer with the next higher layer number in all cases
are stored either in registers in a hub or accessed by a
hub from a look-up table or a central processor in
digital circuit itself or on an additional circuit board
that all hubs have access to (such storage or access also
contains the current numeric values needed by each
hub—individually for each hub—in particular the num-
ber of neurons for that hub, and weights, bias value, and
activation function parameters for each such neuron).

11. The digital circuit of claim 1, wherein the neural
network is a recurrent neural network (RNN) requiring data
feedback from a layer to itself or a previous layer.

12. The digital circuit of claim 11, wherein the required
data feedback of the RNN is implemented via one or more
hubs retaining or looping-back a copy of the data the hub
forwards on to the hub in the layer with the next higher
sequence, and/or sending this data to any hub in a layer with
a smaller sequence number, so that previously computed
values for a given layer can be used when processing
subsequent input values at that layer or previous layers.

13. The digital circuit of claim 1, wherein the value
computed at a set of neurons of a hub can be used to change
the sequential one-layer-after-the-next processing order of
layers via jumping to any other subsequent layer’s hub with
a higher layer number, including a “non-jump” jump to the
next hub in sequence with a layer number one greater than
the current hub, which would have been the next hub to

US 12,353,987 B1

35
process anyway, optionally supplying that jumped-to hub
with the computed value of the neuron’s of the hub origi-
nating the jump, including (a) jumping to the final layer
thereby terminating the inference and supplying the final
answer prediction for a particular set of inputs, and (b)
simply supplying its computed value to subsequent hubs by
adding it to the data moved from hub-to-huh from that point
forward thereby delivering it to all hubs with higher layer
numbers subsequently having data delivered to, including it
in an increasing number of the same types of data already
being sent from previous hubs, all such values being avail-
able for use by the neurons in hubs that receive as additional
data in any hub’s calculations.

14. The digital circuit of claim 13, wherein computations
that lead to changing the sequential one-layer-after-the-next
processing order of the hub processing order, is done by a
programmable CPU, GPU, or NPU device embedded in a
hub, such programmable CPU/GPU/NPU device embedded
for some or all hubs, or by a central programmable CPU/
GPU/NPU device in the digital circuit board that all hubs
have access to or by an external programmable CPU/GPU/
NPU device running in another digital circuit in the local
data center, in a remote data center, or in the Cloud that
communicates via telecommunications.

15. The digital circuit of claim 14, wherein the change to
the sequential one-layer-after-the-next processing order of
the hub processing order and the delivery of the data values
computed by the neuron s of the hub originating the jump is
made permanent for all following data instances presented
for inference, until such time as it is changed again.

16. The digital circuit of claim 1, wherein there is only a
single layer, thereby implementing a fully inter-connected
neuron-to-neuron network, which is a Hopfield network, but
neuron-to-neuron communications are done through a single
hub, not directly neuron-to-neuron, using either hub-to-
neuron wiring, or hub-neuron shared registers.

17. The digital circuit of claim 1, wherein the hub of the
first layer optionally has a programmable CPU/GPU/NPU
device built into it to directly receive and pre-process as
necessary all data input sets supplied to the neural network
for inference, eliminating the need for an input layer in the
network, where the necessary pre-processing can consist of
one or more of (a) scaling and quantization, (b) statistically
estimating scaling and quantization parameters via standard
statistical techniques, (c) vectorization of text data either
using an external neural network transformer or using value
pre-stored in the digital circuit values in a look up table) of
word vectors from an LLM Large Language Model, (d)
time-series transformations (including lags, differences, fil-
ters and transforms, (e) power transformations (on one input,
including logs, and Box-Cox transformations, (f) multipli-
cative transformations on two or more inputs and (g) sta-
tistical testing for changes in the statistical distribution of
data inputs to the first layer using multivariate statistical
tests.

18. The digital circuit of claim 1, wherein the digital
circuit components and wires, and the data inputs are
divided into M multiple subsets, disjoint or overlapping,
known as Fields or Receptive Fields, each with its own hubs,
thereby implementing a Convolutional Neural Network
(CNN), and the circuit itself is replicated K times, thereby
allowing K of the M fields to be processed either sequen-
tially in series, or simultaneously in parallel, or any combi-
nation of series and parallel, with each of the final layer hub
communicating results to an additional hub, known as a final
master hub, or a programmable CPU/GPU/NPU device,
which, when all M fields have been processed and results

30

35

40

45

55

36

reported, computes the model final answer prediction
through a convolution operation as is done in standard
CNN .

19. The digital circuit of claim 1, wherein the data inputs
are replicated as a whole set M times, each input-data-
replicate run through one of K replicates of the circuit, each
of the K circuit-replicates having its own model, with hubs
and h different weights, biases, and activation function
parameters, thereby implementing an ensemble machine
learner, with each of the K running either sequentially in
series, or simultaneously in parallel, or any combination of
series and parallel, with each of the final layer hubs com-
municating results to an additional hub, known as a final-
master hub, or a programmable CPU/GPU/NPU device,
which, when all M replicates have been processed and each
of the M model final answers reported, computes the an
overall model final answer through a data fusion operation
as is done in standard ensembles, where such data fusion can
be based on weighted averages, or an answer-selection
function which chooses one of the K model final answer,
with weights or choice of answer-selection function depend-
ing on the pre-determined or observed by the digital circuit
accuracy of the M replicates, or on what particular partition
of the data input universe for previously defined partitions
based on statistical clustering the current input set falls, or
a combination of both.

20. The digital circuit of claim 19, wherein there are only
hubs, no neurons for any hub, with processors in each hub
making a routing decision as to the next hub to be passed
results and continue processing, or to decide processing is
complete and passing results that serve as the final answer
prediction to the final hub in the final layer to be reported,
the hub decision based on the input variables with their
associated weights serving as thresholds (greater, less-than,
equal) values, not multipliers, and no bias values, and no
activation function, thereby implementing a decision-tree
machine learning system or an ensemble or forest of such
trees, since the hubs making threshold comparisons imple-
ment the test-and-branch operations of a decision tree,
therefore all hub comparisons that will be invoked could in
fact be done in parallel, potentially even in advance with the
results stored in a look up able in the digital circuit, thereby
going from initial presentation of input data to the final
decision hub in one operation.

21. The digital circuit of claim 19, wherein the data fusion
is not based on averages or a specified answer-selection
function, but rather the running of a meta-learning model,
where that meta-learning model is itself implemented via a
sub-circuit of the digital circuit, using any kind of machine
learning model, including models based on not just neural
networks, but on decision trees or discrete-valued choice or
ranking applied to the set of all model final answers.

22. The digital circuit of claim 19, wherein with K
sub-models, but the K models are not replicate-like versions
of a single model with only weights, biases, and activation
functions different, but each can be a wholly different model,
some of them neural networks of any type, and some of them
decision trees, thereby implementing a mixed hybrid con-
figuration, where some hubs have neurons and do standard
weights, bias, and activation function calculations, and other
hubs have no neurons and make threshold comparisons
implementing the test-and-branch operations of decision
trees, thus building an ensemble mixing in any combination
elements from, or entire sub-models of feed forward, RNN,
CNN, Hopfield, and neural networks combining these, and/
or decision-tree learner, with or without the first hub of each
sub-model eliminating the need for an input layer, and

US 12,353,987 B1

37

therefore in addition to an ensemble configuration, this same
arrangement allows use of federated, cooperating, adver-
sarial and swarm systems of inference engines, the differ-
ences in these systems being the information and results
shared or not shared between and among members of these
collectives of engines.

23. The digital circuit of claim 1, wherein communica-
tions between hubs can be fully-connected direct point-to-
point wiring topology, or a star topology where each hub is
at the end of a star spoke and center of the star is a either (1)
a special routing processor or (2) a hub that has only the
purpose of routing hub-to-hub traffic; alternatively one of
the processing hubs can serve as the routing hub as well as
doing its regular work, or a star topology where each hub is
at the end of a star poke but the center of the star is an
on-board CPU which can route, or a bus topology where
each hub can route data to other hubs on the bus, or a
next-neighbor, fixed neighbor or nearest neighbor topology
where hubs pass data they receive that is not intended for
them but rather intended for the huh of some other layer on
to their neighbor until the data reaches its destination.

24. The digital circuit of claim 23, wherein the digital
circuit is implemented as follows: collections of hubs, the
collection being a subset of all hubs, connected as in claim
22, are then considered like a single hub, and connected to
other subset-of-hubs considered like a single hub, all con-
nected in one of the ways specified in claim 22.

25. The digital circuit of claim 4, wherein the digital
circuit is combined with modifying the order of layer
processing, coupled with the decision-making ability of a
processor in one or more hubs, allowing input data process-
ing to be terminated early, or one or more hubs to be skipped,
either because the final answer prediction of the model has
been sufficiently determined, or because an error as occurred
and has to be reported.

26. The digital circuit of claim 1, wherein each hub can be
individually, or all together, designed to transfer data to and
from each of the neurons to which it is connected in parallel
or in series, or a combination thereof, the decision made
either statically at digital circuit build time, or dynamically
during inference, such decision based on cost and speed-of-
inference processing considerations.

27. The digital circuit of claim 15, wherein not only can
the run-time configuration (number of layers, number of
neurons per layer, i.e., the depth and width of the network,
known as the “shape” of the network) and the computational
sequencing (computational graph) be changed dynamically
“on the fly”, but some or all of the model parameters
(weights, biases, activation function parameters) can be
changed as well, at any time, in a controlled and orderly
fashion, implementing a “Load Mode”, that accomplishes
these changes while pausing the continuous processing of
input data if there are no pre-scheduled or observed down-
time periods (times when no inputs are presented) available.

28. The digital circuit of claim 1, wherein the addition of
a triggering event for triggering a full or partial model
parameter change which triggering event is an arriving
signal from an external local or remote processing system
which also supplies the new parameter values in response to
a machine learning model re-run or improvement under-
taken on the external system, including multiple external
systems, running on the same hardware as the digital circuit
or different hardware, updating one or more inference
engines on the digital circuit, with the same or different
updates based on training and/or retraining of multiple
machine learning models on one or more of multiple exter-
nal systems, where one, some, or all of the external systems

10

15

20

25

30

35

40

45

50

55

60

65

38

could be running an exact clone, continuously, sporadically,
or scheduled, of the basic model tor collections of models
running on the digital circuit.

29. The digital circuit of claim 28, wherein the triggering
event for making full or partial model parameter changes is
a signal from a programmable CPU/GPU/NPU device, on
the digital circuit itself, or a CPU/GPU/NPU implemented in
a second digital circuit adjacent to the circuit that is tracking
model inference performance, when model inference accu-
racy statistics are available from an external source, that
CPU/GPU/NPU is running a machine learning model itself,
training and estimating a model that has the potential to
improve the current model running on the digital circuit,
and, if there is an improvement, is used to replace or modify
the current model via the triggering event.

30. The digital circuit of claim 1, wherein the inference
engine is being used to produce prediction final answers that
are state-changes in a real-world running system and option-
ally alerting that real-world running system to predicted
state-changes of certain types, and where the actual current
system state is an input to the inference engine at every data
w-input time, or at some periodic or random input times, or
manually entered at any point in time, thus providing
prediction-accuracy tracking to guide parameter value
changes.

31. The digital circuit of claim 1, wherein the digital
circuit is manufactured with additional hub and “neuron
space” circuits that are initially unused but which can be
changed to be in use automatically and in real-time in
response to changes to the model number of layers and
neurons per layer as dictated by commands from external
servers or on-board programmable CPU/GPU/NPU devices;
unused hubs can have their power turned off, and turned
back on when they changed to be in use.

32. The digital circuit of claim 31, wherein a specific
model change order is to add one or more neurons to a
particular hub, but the are no spare neuron circuit compo-
nents available that can connect to that hub, so since spare
hubs that can in fact be connected to spare neurons do exist
in the digital circuit, the digital circuit is built with logic to
support the following: any hub can have one or more
“helper” hubs, assigned from the collection of unused hubs,
connected to it, and the neurons connected to any hub’s
helper hubs are treated as if they are neurons connected to
the hub itself, plus helper hubs can themselves have helper
hub which in particular digital wiring configurations might
be more economical (smaller wire lengths) than connecting
multiple helper hubs directly to a single hub.

33. The digital circuit of claim 1, wherein the loading
process of numeric weights and biases for use by neurons,
and the loading of input data values to be run though the
model, automatically scales the numeric values to signed
integers in a specific range the range determined by the value
of B chosen during the manufacturing of the digital circuit,
where B is the number of bits used for integer arithmetic for
any particular design of the digital circuit; this capability
implemented as an option to allow skipping the scaling if the
model developers have already run a distillation/quantiza-
tion process that has the same result, and furthermore the
circuit can be manufactured to restrict certain numeric
values to use less bits than B, for any number b less then B,
to meet cost and power requirement minimization goals,
where different values of b can be used on different parts of
the circuit.

34. The digital circuit of claim 1, wherein the input data
have been transformed and manipulated as received, and
done so iteratively as necessary, to allow (a) facet-masking

US 12,353,987 B1

39

which is the selective blocking of all data inputs of data
types as specified by the machine learning model, for
example day-of-week values or zip codes, known as facets
thereby reducing noise in the inputs that negatively affects
the models, repeated over different selections of one or a
group of facets to mask, (b) time-series transformations on
numeric data collected over time, such transformations
being differences, exponential smoothing, Kalman filtering,
ARIMA and GARCH transformations, where the parameters
of such functions are either fixed in advance or not fixed in
advance but are estimated and/or learned, iteratively or
sequentially from the data presented for inference or from
the model outputs, adjusting initially-provided values as
necessary, to produce inputs that yield more accurate
machine learning model final answer, and (c) the replace-
ment of textual inputs, either in their entirety or divided into
chunks, with dense vectors from a Large Language Model,
such vectors derived from running an external or on the
digital circuit transformer-type neural network, or fetched
from a memory store or lookup table that holds pre-com-
puted vectors for individual words and phrases, with the
vector dimension as is or reduced from the originally Large
Language Model vectors, these word-and-phrase vectors
then averaged over all the words and phrases in the text
inputs or text chunks, and/or the vector distances from these
inputs or chunks to one or more vectors computed on
specific text representing important queries, prompts, topics,
events, explanations or descriptions potentially important to
the particular application.

35. The digital circuit of claim 1, wherein, when an
activation function is used in the model for which this circuit
is serving as an inference engine, the activation function is
(1) a standard activation function used in machine learning,
computed if necessary by use of a neuron-accessible float-
ing-point-capable CPU/GPU/NPU, or in a preferred
embodiment, (2) a piecewise spline, a linear spline in a
preferred embodiment, which is used as a universal approxi-
mator to an activation function, where the parameters of this
spline can be defined, refined, tuned, optimized and updated
using a data-load protocol not just initially, but on-the-fly
during running of the inference engine as well, using a
neuron-accessible CPU with fixed-point operations only, as
required by this spline.

36. The digital circuit of claim 1, wherein all arithmetic
operations are executed an signed integer values or unsigned
integer values only, with the arithmetic operations restricted
to a pre-defined subset of the arithmetic operations that are
generally supported by general-purpose CPUs, the restricted
set is chosen specifically to accommodate the models for
which the digital circuit is built.

10

15

20

25

30

35

40

45

40

37. The digital circuit of claim 1, wherein computations
on inputs which are text strings are limited to the first Z
characters of each words, in the text string, on a word-by-
word basis, where Z is determined either in advance or at
digital circuit run time and supplied as an input to the hub
doing input processing.

38. The digital circuit of claim 1, wherein data inputs, in
addition to being numeric, text, images, audio, and video,
can be discrete multinomial, categorical, or ordinal data with
alphanumeric labels, handled as numeric data through
encoding and/or partitioning, ordinal data can be converted
to Boolean by grouping together all values less than, and
grouping all values greater-or-equal than, one of the ordinal
values designated as a middle point.

39. The digital circuit of claim 1, wherein accuracy
tracking is implemented and modifications to layer-to-layer
data routing along with changes to neuron parameters that
increase accuracy based on this accuracy as tracking, the
recording of all input data values, and output data from
every hub, and output final predictions are stored for a range
of historical time periods in any type of storage, including
but not limited to circular buffers, for a range extent based
on memory available in the digital circuit, with the capabil-
ity to conserve storage requirements by storing only subsets
of historical data that have been deemed, by industry-
standard calculations, to be particularly influential or
impactful on the model’s operation and/or predictions/final
answers.

40. The digital circuit of claim 1, wherein the digital
circuit’s instantiation of hubs, neurons, the layer-to-layer
data routing, the neuron parameters, and the final prediction
and alert rules for all models, as well as the digital circuit’s
operation to update, expand, delete, and modify these, is
accomplished by inputting to the digital circuit a structured
language of symbols and values, applied in a cascading
manner; the digital circuit contains a special purpose pro-
cessor to parse and execute this language.

41. The digital circuit of claim 40, wherein the digital
circuit is implemented on an ASIC, a standard FPGA, a
special type of FPGA that omits field-programmability
except for the instantiations and updates/expansions/dele-
tions/modifications, or for convenience a general purpose
CPU or NPU.

42. The digital circuit of claim 1, wherein communica-
tions to a server in a local, remote, or cloud data center is two
way, allowing the server to learn, and optionally simulate,
the digital circuit in real time, on a scheduled basis, or an
ad-hoc, or sporadic basis.

#* #* #* #* #*

